Usage of all small properties

Algebra Level 5

If A 3 × 3 = 5 |A|_{3\times 3}=5

.Find the value of 3 a d j ( 2 A ) |3adj(2A)| , where A = d e t ( A ) |A|=det(A)

Do like and share


The answer is 43200.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Samrit Pramanik
May 21, 2018

Let 2 A = B 2A=B

B = 2 A = 2 3 A = 8 × 5 = 40 \Rightarrow |B|=|2A|=2^{3} |A|=8\times 5=40 [Since A A is a 3 × 3 3 \times 3 matrix]

Now, B 1 = A d j ( B ) B B^{-1}=\frac{Adj(B)}{|B|}

B B 1 = A d j ( B ) \Rightarrow \big||B| B^{-1}\big|=|Adj(B)|

B 3 1 B = A d j ( B ) \Rightarrow |B|^{3}\frac{1}{|B|}=|Adj(B)|

B 2 = A d j ( B ) \Rightarrow |B|^{2}=|Adj(B)|

4 0 2 = A d j ( B ) \Rightarrow 40^{2}=|Adj(B)|

1600 = A d j ( B ) \Rightarrow 1600=|Adj(B)|

1600 × 27 = 3 3 A d j ( B ) \Rightarrow 1600\times 27=3^{3} |Adj(B)|

3 A d j ( B ) = 43200 \Rightarrow |3 Adj(B)|=\boxed{43200}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...