USAMO 2017 Q6

Algebra Level 5

a b 3 + 4 + b c 3 + 4 + c d 3 + 4 + d a 3 + 4 \frac{a}{b^3+4}+\frac{b}{c^3+4}+\frac{c}{d^3+4}+\frac{d}{a^3+4}

Let a , b , c , d 0 a,b,c,d\geq 0 be reals such that a + b + c + d = 4 a+b+c+d=4 . What is the minimum value of the above expression (to 3 decimal places)?


The answer is 0.667.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

We observe the miraculous identity 1 b 3 + 4 1 4 b 12 \frac{1}{b^3+4} \ge \frac14 - \frac{b}{12} since 12 ( 3 b ) ( b 3 + 4 ) 12-(3-b)(b^3+4) = b ( b + 1 ) ( b 2 ) 2 0 b(b+1)(b-2)^2 \ge 0 . Moreover, a b + b c + c d + d a = ( a + c ) ( b + d ) ( a + b + c + d 2 ) 2 = 4. ab+bc+cd+da = (a+c)(b+d) \le \left( \frac{a+b+c+d}{2} \right)^2 = 4. Thus cyc a b 3 + 4 a + b + c + d 4 a b + b c + c d + d a 12 1 1 3 = 2 3 . \sum_{\text{cyc}} \frac{a}{b^3+4} \ge \frac{a+b+c+d}{4} - \frac{ab+bc+cd+da}{12} \ge 1 - \frac13 = \frac23. This minimum 2 / 3 2/3 is achieved at ( a , b , c , d ) (a,b,c,d) = ( 2 , 2 , 0 , 0 ) (2,2,0,0) and permutations.

This is the only good solution for this problem as of my looking

Nitin Kumar - 1 year, 3 months ago
Rajdeep Brahma
Jan 19, 2018

a b 3 + 4 \frac{a}{b^3+4} - a 4 \frac{a}{4} =- a 4 ( b 3 + 4 ) \frac{a}{4(b^3+4)} THEN SHOW BY CONCEPT OF MAXIMA OR MINIMA OR ELSE b ( b + 1 ) ( b 2 ) 2 > = 0 b*(b+1)*(b-2)^2>=0 THAT b 3 b 3 + 4 \frac{b^3}{b^3+4} < b 3 \frac{b}{3} THEN USE SIMPLE AM GM AND CONCLUDE ....ANS WILL BE 2 3 \frac{2}{3} AT (2,2,0,0).

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...