Use the Binomial Expansion If You're Crazy

Calculus Level 3

0 1 x 5 ( 1 x 3 ) 10 d x \large \int_{0}^{1} x^5(1-x^3)^{10} \, dx

If the above definite integral can be expressed as a b \dfrac{a}{b} , where a a and b b are coprime positive integers, find a + b a+b .


The answer is 397.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

6 solutions

Andrew Ellinor
Feb 10, 2016

Noticing the monstrous 1 x 3 1 - x^3 term inside the power of 10, we try the substitution u = x 3 , u = x^3, which leads to d u = 3 x 2 d x . du = 3x^2dx. This converts our integral accordingly:

0 1 x 5 ( 1 x 3 ) 10 d x 1 3 0 1 u ( 1 u ) 10 d u . \int_0^1 x^5 (1 - x^3)^{10}dx \longrightarrow \frac{1}{3} \int_0^1 u(1 - u)^{10}du.

At this point, we have two options.

Option 1: Continue by making the substitution v = 1 u , v = 1 - u, thereby transforming the integral again:

1 3 0 1 u ( 1 u ) 10 d u 1 3 1 0 ( 1 v ) v 10 d v = 1 3 0 1 v 10 v 11 d v = 1 396 \frac{1}{3} \int_0^1 u(1 - u)^{10}du \longrightarrow -\frac{1}{3} \int_1^0 (1 - v)v^{10}dv = \frac{1}{3} \int_0^1 v^{10} - v^{11}dv = \boxed{\frac{1}{396}}

Option 2: Recognize that the integral in terms of u u is equivalent to the value of one-third the beta function B ( 2 , 11 ) = 1 3 × 1 ! × 10 ! 12 ! = 1 396 . B(2, 11) = \frac{1}{3} \times \frac{1! \times 10!}{12!} = \boxed{\frac{1}{396}}.

Or there might be Option 3: 1 3 0 1 ( 1 u 1 ) ( 1 u ) 10 d u = 1 3 ( ( 0 1 ( 1 u ) 11 d u ) ( 0 1 ( 1 u ) 10 d u ) ) \small{\frac{-1}{3} \int_0^1 (1-u-1)(1 - u)^{10}du=\frac{-1}{3} ((\int_0^1 (1 - u)^{11}du)-(\int_0^1 (1 - u)^{10}du))} = 1 3 ( 1 11 1 12 ) . . . . . . =\dfrac{1}{3}(\dfrac{1}{11}-\dfrac{1}{12})......


Anyways I have found a generalised pattern using Integration by parts for: I ( m , n ) = 0 1 x m ( 1 x 3 ) n d x as : I(m,n)=\int_{0}^{1} x^m(1-x^3)^{n} \ dx ~~\text{as}: I ( m , n ) = 3 n × n ! ( m + 3 n + 1 ) ( ( m + 1 ) ( m + 4 ) . . . . ( m + 3 n 2 ) ) I(m,n)=\dfrac{3^n\times n!}{(m+3n+1)((m+1)(m+4)....(m+3n-2))} Can you verify this??


For this question we can put n=10 and m=5 to get the required answer..

Rishabh Jain - 5 years, 4 months ago
Aareyan Manzoor
Feb 10, 2016

sub u = x 3 x = u 1 / 3 d x = u 2 / 3 3 d u u=x^3\to x=u^{1/3}\to dx=\dfrac{u^{-2/3}}{3} du boundaries dont change. put this in 0 1 u 5 / 3 ( 1 u ) 10 u 2 / 3 3 d u = 1 3 0 1 u ( 1 u ) 10 d u = 1 3 B ( 2 , 11 ) = 1 396 \int_0^1 u^{5/3} (1-u)^{10} \dfrac{u^{-2/3}}{3} du=\dfrac{1}{3}\int_0^1 u(1-u)^{10} du\\ =\dfrac{1}{3}B(2,11)=\dfrac{1}{396}

Lavannya Suressh
Feb 10, 2016
  • substitute 1- x 3 x^{3} as t 1 2 t^{\frac{1}{2}}

  • dx = 1 6 x 3 {\frac{-1}{6x^{3}}} t 1 2 t^{\frac{-1}{2}} dt

  • 0 1 x 5 ( 1 x 3 ) 10 d x \int _{ 0 }^{ 1 }{ { x }^{ 5 }{ (1\quad -\quad { x }^{ 3 }) }^{ 10 } } dx = 1 6 0 1 t 9 / 2 ( 1 t 1 / 2 ) d t \frac { 1 }{ 6 } \int _{ 0 }^{ 1 }{ { t }^{ { 9 }/{ 2 } } } (1-{ t }^{ { 1 }/{ 2 } })dt

Using basic integration and applying limits the above expression evaluates to

1 6 ( 2 1 11 / 2 11 1 6 6 ) \frac { 1 }{ 6 } (\frac { 2\quad { 1 }^{ { 11 }/{ 2 } } }{ 11 } -\frac { { 1 }^{ 6 } }{ 6 } ) = 1 396 \frac { 1 }{ 396 }

Mike Grigsby
Apr 2, 2016

This is what I did, but not quite as efficient as some of solutions already posted. Notice that x 3 = x 6 x^3 = \sqrt{x^6} . By letting u = x 6 u = x^6 , then d u = 6 x 5 d x du = 6x^5 dx and 1 6 d u = x 5 d x \frac{1}{6}du = x^5 dx and this transforms the integral to

1 6 0 1 ( 1 u ) 10 d u \frac{1}{6} \int_0^1 (1-\sqrt{u})^{10} du . Make another substitution: v = 1 u v = 1-\sqrt{u} , then d v = 1 2 u d u dv = \frac{-1}{2\sqrt{u}} du and solving for d u du gives d u = 2 u d v du = -2\sqrt{u} dv . Since 2 v 2 = 2 u 2v-2 = -2\sqrt{u} the integral now becomes

1 6 1 0 v 10 ( 2 v 2 ) d v = 1 3 0 1 ( v 10 v 11 ) d v = 1 396 \frac{1}{6} \int_1^0 v^{10}(2v-2)dv = \frac{1}{3} \int_0^1 (v^{10} - v^{11}) dv = \frac{1}{396} . Therefore, the answer is 397.

Michael Hardy
Mar 27, 2016

0 1 x 3 ( 1 x 3 ) 10 ( x 2 d x ) HINT! = 0 1 u ( 1 u ) 10 ( 1 3 d u ) = 1 3 1 0 ( 1 w ) w 10 ( d w ) . \displaystyle \int_0^1 x^3 (1-x^3)^{10}\ \ \underbrace{\Big( x^2\,dx\Big)}_\text{HINT!} = \int_0^1 u(1-u)^{10}\left(\frac 1 3 \, du\right) = \frac 1 3 \int_1^0 (1-w) w^{10} \, (-dw).

= 1 3 0 1 ( w 10 w 11 ) d w = 1 3 ( 1 11 1 12 ) = 1 132 . \displaystyle = \frac 1 3 \int_0^1 (w^{10} - w^{11})\,dw = \frac 1 3 \left( \frac 1 {11} - \frac 1 {12} \right) = \frac 1 {132}.

I think you might want to check your final statement, friend.

Henryk Haniewicz - 5 years, 2 months ago

x 5 ( 1 x 3 ) 1 0 = 1 3 ( 1 12 x 36 10 11 x 33 + 9 2 x 30 40 3 x 27 + 105 4 x 24 36 x 21 + 35 x 18 24 x 15 + 45 4 x 1 2 10 3 x 9 + 1 2 x 6 ) + C \int x^5(1-x^3)^10 = \frac{1}{3}\left(\frac{1}{12}x^{36}-\frac{10}{11}x^{33}+\frac{9}{2}x^{30}-\frac{40}{3}x^{27}+\frac{105}{4}x^{24}-36x^{21}+35x^{18}-24x^{15}+\frac{45}{4}x^12-\frac{10}{3}x^9+\frac{1}{2}x^6\right)+C

Do not forget to use: a b d x = lim x b F ( ( x ) ) lim x a + F ( ( x ) ) \int_{a}^{b}\,dx = \lim_{x\to b^-}F((x))- \lim_{x\to a^+}F((x))

So 1 396 \frac{1}{396} . We it makes 397 \because of a b \frac{a}{b}

ADIOS!!! \LARGE \text{ADIOS!!!}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...