Halving An Angle Many Times

Geometry Level 3

( sin 1 5 2 sin 2 7. 5 ) ( sin 1 5 + 2 cos 2 7. 5 ) = ? \large (\color{#D61F06}{\sin 15^\circ} - \color{#3D99F6}{2\sin^2 7.5^\circ})(\color{#D61F06}{\sin 15^\circ} + \color{#3D99F6}{2\cos^2 7.5^\circ})= \, ?


The answer is 0.5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Nihar Mahajan
Apr 11, 2016

Let x = 7. 5 x=7.5^\circ then the expression changes to:

( sin 2 x 2 sin 2 x ) ( sin 2 x + 2 cos 2 x ) (\sin 2x - 2\sin^2 x)(\sin 2x + 2\cos^2 x)

Using the identities sin 2 x = 1 cos 2 x 2 \sin^2 x = \dfrac{1-\cos 2x}{2} and cos 2 x = 1 + cos 2 x 2 \cos^2 x=\dfrac{1+\cos 2x}{2} we have:

= ( sin 2 x + cos 2 x 1 ) ( sin 2 x + cos 2 x + 1 ) =(\sin 2x +\cos 2x-1)(\sin 2x+\cos 2x+1)

= ( sin 2 x + cos 2 x ) 2 1 =(\sin 2x + \cos 2x)^2 - 1

= sin 2 2 x + cos 2 2 x + 2 sin 2 x cos 2 x 1 =\sin^2 2x + \cos^2 2x + 2\sin 2x\cos 2x-1

Using sin 2 2 x + cos 2 2 x = 1 \sin^2 2x + \cos^2 2x = 1 and sin 4 x = 2 sin 2 x cos 2 x \sin 4x = 2\sin 2x\cos 2x we have:

= 1 1 + sin 4 x =1-1+\sin 4x

= sin 4 x =\sin 4x

Re-subsituting x = 7. 5 x=7.5^\circ ,

sin 4 x = sin 3 0 = 1 2 = 0.5 \sin 4x=\sin 30^\circ = \dfrac{1}{2}=\boxed{0.5}

Moderator note:

Great approach of using the substitution to make patterns easier to find and implement.

Hobart Pao
Apr 11, 2016

Feeling the absolute necessity to multiply things out, I got:

sin 2 1 5 + 2 sin 1 5 cos 2 7. 5 2 sin 2 7. 5 sin 1 5 4 sin 2 7. 5 cos 2 7. 5 \sin^{2} 15^{\circ} + 2 \sin 15^{\circ} \cos^{2} 7.5^{\circ} - 2 \sin^{2} 7.5^{\circ} \sin 15^{\circ} - 4 \sin^{2} 7.5^{\circ} \cos^{2} 7.5^{\circ}

= sin 2 1 5 + 2 sin 1 5 cos 2 7. 5 2 sin 2 7. 5 sin 1 5 ( 2 sin 7. 5 cos 7. 5 ) 2 = \sin^{2} 15^{\circ} + 2 \sin 15^{\circ} \cos^{2} 7.5^{\circ} - 2 \sin^{2} 7.5^{\circ} \sin 15^{\circ} - \left(2 \sin 7.5^{\circ} \cos 7.5^{\circ}\right)^2

= sin 2 1 5 + 2 sin 1 5 cos 2 7. 5 2 sin 2 7. 5 sin 1 5 sin 2 1 5 = \sin^{2} 15^{\circ} + 2 \sin 15^{\circ} \cos^{2}7.5^{\circ} - 2 \sin^{2} 7.5^{\circ} \sin 15^{\circ} - \sin^{2} 15^{\circ}

= 2 sin 1 5 [ cos 2 7. 5 sin 2 7. 5 ] = 2 \sin 15^{\circ} \left[ \cos^{2} 7.5^{\circ} - \sin^{2} 7.5^{\circ} \right]

= 2 sin 1 5 cos 1 5 = 2 \sin 15^{\circ} \cos 15^{\circ}

= sin 3 0 = 1 2 = \sin 30^{\circ } = \boxed{\dfrac{1}{2}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...