( sin 1 5 ∘ − 2 sin 2 7 . 5 ∘ ) ( sin 1 5 ∘ + 2 cos 2 7 . 5 ∘ ) = ?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Great approach of using the substitution to make patterns easier to find and implement.
Feeling the absolute necessity to multiply things out, I got:
sin 2 1 5 ∘ + 2 sin 1 5 ∘ cos 2 7 . 5 ∘ − 2 sin 2 7 . 5 ∘ sin 1 5 ∘ − 4 sin 2 7 . 5 ∘ cos 2 7 . 5 ∘
= sin 2 1 5 ∘ + 2 sin 1 5 ∘ cos 2 7 . 5 ∘ − 2 sin 2 7 . 5 ∘ sin 1 5 ∘ − ( 2 sin 7 . 5 ∘ cos 7 . 5 ∘ ) 2
= sin 2 1 5 ∘ + 2 sin 1 5 ∘ cos 2 7 . 5 ∘ − 2 sin 2 7 . 5 ∘ sin 1 5 ∘ − sin 2 1 5 ∘
= 2 sin 1 5 ∘ [ cos 2 7 . 5 ∘ − sin 2 7 . 5 ∘ ]
= 2 sin 1 5 ∘ cos 1 5 ∘
= sin 3 0 ∘ = 2 1
Problem Loading...
Note Loading...
Set Loading...
Let x = 7 . 5 ∘ then the expression changes to:
( sin 2 x − 2 sin 2 x ) ( sin 2 x + 2 cos 2 x )
Using the identities sin 2 x = 2 1 − cos 2 x and cos 2 x = 2 1 + cos 2 x we have:
= ( sin 2 x + cos 2 x − 1 ) ( sin 2 x + cos 2 x + 1 )
= ( sin 2 x + cos 2 x ) 2 − 1
= sin 2 2 x + cos 2 2 x + 2 sin 2 x cos 2 x − 1
Using sin 2 2 x + cos 2 2 x = 1 and sin 4 x = 2 sin 2 x cos 2 x we have:
= 1 − 1 + sin 4 x
= sin 4 x
Re-subsituting x = 7 . 5 ∘ ,
sin 4 x = sin 3 0 ∘ = 2 1 = 0 . 5