Calculator is for the dull

Algebra Level 2

999 7 2 3 × 999 8 2 + 3 × 999 9 2 = ? \large {9997^2}-{3}\times {9998^2}+{3}\times {9999^2} = \, {?}


The answer is 100000000.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

7 solutions

Nihar Mahajan
Apr 11, 2016

Let 9998 = n 9998=n then the expression turns to:

( n 1 ) 2 3 n 2 + 3 ( n + 1 ) 2 (n-1)^2-3n^2+3(n+1)^2

= n 2 2 n + 1 3 n 2 + 3 n 2 + 6 n + 3 = n^2-2n+1-3n^2+3n^2+6n+3

= n 2 + 4 n + 4 =n^2+4n+4

= ( n + 2 ) 2 =(n+2)^2

Re-substituting 9998 = n 9998=n we have:

( n + 2 ) 2 = ( 9998 + 2 ) 2 = ( 10000 ) 2 = 100000000 (n+2)^2=(9998+2)^2=(10000)^2=\boxed{100000000}

Moderator note:

Do you know how to generalize this expression?

Hint: 3 = ( 3 1 ) = ( 3 2 ) 3 = { 3 \choose 1 } = { 3 \choose 2 } .

Did the same way (+1)

Aditya Sky - 5 years, 2 months ago

Log in to reply

That's nice. I was intrigued by this identity: ( n + 2 ) 2 = ( n 1 ) 2 3 n 2 + 3 ( n + 1 ) 2 (n+2)^2=(n-1)^2-3n^2+3(n+1)^2 , hence decided to post a problem on it ;)

Nihar Mahajan - 5 years, 2 months ago

Log in to reply

That's really nice. Keep posting awesome problems like this.

Aditya Sky - 5 years, 2 months ago

Great, I had done by Abhay's method with slight modifications. This problem should be level 3 :thinkingface: Nice.. :+1:

Ashish Menon - 5 years, 1 month ago

999 7 2 3 × 999 8 2 + 3 × 999 9 2 \Rightarrow \color{#D61F06}{9997^2}-\color{#20A900}{3}×\color{#3D99F6}{9998^2}+\color{#20A900}{3}×\color{#EC7300}{9999^2}

999 7 2 3 [ 999 8 2 999 9 2 ] \Rightarrow \color{#D61F06}{9997^2}-\color{#20A900}{3}[\color{#3D99F6}{9998^2}-\color{#EC7300}{9999^2}]

999 7 2 3 [ 199997 × ( 1 ) ] \Rightarrow \color{#D61F06}{9997^2}-\color{#20A900}{3}[\color{#BA33D6}{199997}×(\color{grey}{-1})]

999 7 2 + 199997 × 3 \Rightarrow \color{#D61F06}{9997^2}+\color{#BA33D6}{199997}×\color{#20A900}{3}

( 10000 3 ) 2 + [ ( 10000 + 9997 ) × 3 ] \Rightarrow (\color{magenta}{10000}-\color{#20A900}{3})^2+[(\color{magenta}{10000}+\color{#D61F06}{9997})×\color{#20A900}{3}]

Let 10000 = a . \color{magenta}{10000}=a.

( a 3 ) 2 + ( a + 9997 ) × 3 \Rightarrow (a-\color{#20A900}{3})^2+(a+\color{#D61F06}{9997})×\color{#20A900}{3}

a 2 3 a + 30000 \Rightarrow a^2-\color{#20A900}{3}a+\color{#E81990}{30000}

1000 0 2 30000 + 30000 = 100000000 \Rightarrow \color{magenta}{10000^2}-\color{#E81990}{30000}+\color{#E81990}{30000}=\boxed{\color{#624F41}{100000000}}

did the same way (Upvoted)

Syed Baqir - 5 years, 2 months ago

Log in to reply

: ) \Large :-)

A Former Brilliant Member - 5 years, 2 months ago
James Swan
Apr 12, 2016

Let 9997 = x 9997=x

x 2 3 ( x + 1 ) 2 + 3 ( x + 2 ) 2 x^2-3(x +1)^2+3(x+2)^2

x 2 3 ( x 2 + 2 x + 1 ) + 3 ( x 2 + 4 x + 4 ) x^2-3(x^2+2x+1)+3(x^2+4x+4)

x 2 3 x 2 6 x 3 + 3 x 2 + 12 x + 12 x^2-3x^2-6x-3+3x^2+12x+12

x 2 + 6 x + 9 x^2+6x+9

( x + 3 ) 2 (x+3)^2

Substitute x x

( 9997 + 3 ) 2 (9997+3)^2

1000 0 2 10000^2

100000000 100000000

Silver Vice
Apr 14, 2016

Chew-Seong Cheong
May 22, 2020

Let a = 1 0 4 a=10^4 . Then we have:

( a 3 ) 2 3 ( a 2 ) 2 + 3 ( a 1 ) 2 = a 2 6 a + 9 3 ( a 2 4 a + 4 ) + 3 ( a 2 2 a + 1 ) = a 2 = 1 0 8 = 100 000 000 \begin{aligned} (a-3)^2 - 3(a-2)^2 + 3(a-1)^2 & = a^2 - 6a + 9 - 3(a^2 - 4a + 4) + 3(a^2 - 2a+1) \\ & = a^2 = 10^8 = \boxed{\text{100 000 000}} \end{aligned}

Ivan Tanuwijaya
Apr 12, 2016

x= 9999 (9997)^2 - 3 (9998)^2 + 3 (9999)^2 (x-2)^2 - 3 (x - 1)^2 + 3 (x)^2 x^2 -4x +4 - 3x^2 +6x -3 +3x^2 x^2 +2x +1 (x+1)^2 (9999 +1 )^2 (10000)^2 = 100000000

Nikhil Gautam
Apr 18, 2016

nihar mahajan u r genius

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...