Use calculus?

Algebra Level 4

If x x and y y are real numbers, and 3 x 2 + 2 y 2 = 6 x 3x^2+2y^2=6x , find the greatest value of x 2 + y 2 x^2+y^2 .


The answer is 4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

3 x 2 + 2 y 2 = 6 x 3 x 2 6 x + 2 y 2 = 0 3 ( x 2 2 x + 1 ) + 2 y 2 = 3 ( x 1 ) 2 + 2 3 y 2 = 1 \begin{aligned} 3x^2+2y^2 & = 6x \\ 3x^2-6x+2y^2 & = 0 \\ 3(x^2-2x+1) + 2y^2 & = 3 \\ (x-1)^2 + \frac 23 y^2 & = 1 \end{aligned}

Using the identity cos 2 θ + sin 2 θ = 1 \cos^2 \theta + \sin^2 \theta = 1 , we have { cos θ = x 1 x = cos θ + 1 sin θ = 2 3 y y = 3 2 sin θ \begin{cases} \cos \theta = x-1 & \implies x = \cos \theta + 1 \\ \sin \theta = \sqrt {\dfrac 23}y & \implies y = \sqrt {\dfrac 32} \sin \theta \end{cases}

Therefore, we have:

x 2 + y 2 = ( cos θ + 1 ) 2 + 3 2 sin 2 θ = cos 2 θ + 2 cos θ + 1 + 3 2 sin 2 θ = 2 + 2 cos θ + 1 2 sin 2 θ = 2 + 2 cos θ + 1 2 ( 1 cos 2 θ ) = 5 2 1 2 ( cos 2 θ 4 cos θ + 4 ) + 2 = 9 2 1 2 ( cos θ 2 ) 2 Note that x 2 + y 2 is maximum, when cos θ = 1 4 \begin{aligned} x^2+y^2 & = (\cos \theta + 1)^2 + \frac 32 \sin^2 \theta \\ & = \cos^2 \theta + 2\cos \theta + 1 + \frac 32 \sin^2 \theta \\ & = 2 + 2\cos \theta + \frac 12 \sin^2 \theta \\ & = 2 + 2\cos \theta + \frac 12(1 - \cos^2 \theta) \\ & = \frac 52 - \frac 12(\cos^2 \theta - 4\cos \theta + 4) + 2 \\ & = \frac 92 - \frac 12({\color{#3D99F6}\cos \theta} - 2)^2 & \small \color{#3D99F6} \text{Note that }x^2+y^2 \text{ is maximum, when }\cos \theta = 1 \\ & \le \boxed{4} \end{aligned}

Sir, can you explain the intuition of taking x 1 = cos θ x-1 = \cos\theta and for s i n θ sin\theta also ?

Aman thegreat - 3 years, 8 months ago

Log in to reply

I am using the identity cos 2 θ + sin 2 θ = 1 \cos^2 \theta + \sin^2 \theta = 1 .

Chew-Seong Cheong - 3 years, 8 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...