A number theory problem by Hritesh Mourya

What are the last 2 digits of 1 1 25 11^{25} ?

25 11 43 51 21

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Feb 16, 2017

1 1 25 1 1 10 × 2 1 1 5 (mod 100) ( 10 + 1 ) 10 × 2 1 1 5 (mod 100) ( 1 0 10 + 10 × 1 0 9 + . . . + 10 × 10 + 1 ) 2 1 1 5 (mod 100) 1 × 1 1 5 (mod 100) 1 × 1 1 5 (mod 100) 1 0 5 + 5 × 1 0 4 + 10 × 1 0 3 + 10 × 1 0 2 + 5 × 10 + 1 (mod 100) 51 (mod 100) \begin{aligned} 11^{25} & \equiv 11^{10\times 2}11^5 \text{ (mod 100)} \\ & \equiv (10+1)^{10\times 2}11^5 \text{ (mod 100)} \\ & \equiv (10^{10} + 10\times 10^9+...+10\times 10 +1)^2 11^5 \text{ (mod 100)} \\ & \equiv 1\times 11^5 \text{ (mod 100)}\\ & \equiv 1\times 11^5 \text{ (mod 100)} \\ & \equiv 10^5 + 5 \times 10^4 + 10 \times 10^3 + 10 \times 10^2 + 5 \times 10 + 1 \text{ (mod 100)} \\ & \equiv \boxed{51} \text{ (mod 100)} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...