Use geometrical approach

a 2 2 a b 2 b 3 + 1 = c \large\dfrac { { a }^{ 2 } }{ 2a{ b }^{ 2 } - { b }^{ 3 } + 1 } = c

Given that a , b a,b and c c are positive integers satisfying the equation above. Find the value of a b a^b such that it is larger than 1 and a + b a+b is minimized.


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Priyanshu Mishra
Sep 21, 2016

Denote by k k the ratio

a 2 2 a b 2 b 3 + 1 \huge\ \frac { { a }^{ 2 } }{ 2a{ b }^{ 2 } - { b }^{ 3 } + 1 } .

Because k > 0 k > 0 we have 2 a b 2 b 3 + 1 > 0 \large\ { 2a{ b }^{ 2 } - { b }^{ 3 } + 1 } > 0 , so a > b 2 1 2 b 2 \large\ a > \frac { b }{ 2 } - \frac { 1 }{ 2{ b }^{ 2 } } and hence

a b 2 \large\ a\ge \frac { b }{ 2 } . Using this and the fact that k 1 k \ge\ 1 , we deduce that a 2 b 2 ( 2 a b ) + 1 \large\ { a }^{ 2 }\ge { b }^{ 2 }\left( 2a-b \right) +1 ,

So a 2 > b 2 ( 2 a b ) 0 \large\ { a }^{ 2 }>{ b }^{ 2 }\left( 2a - b \right) \ge 0 . Hence either a > b a > b or 2 a = b 2a = b .

Now consider the two solutions a 1 , a 2 \large\ { a }_{ 1 }, { a }_{ 2 } to the quadratic equation

a 2 2 k b 2 a + k ( b 3 1 ) = 0 , \large\ { a }^{ 2 } - 2k{ b }^{ 2 }a + k({ b }^{ 3 } - 1) = 0,

for fixed positive integers k , b k, b , and assume that one of them is an integer. Then other is also an integer because
a 1 + a 2 = 2 k b 2 \large\ { a }_{ 1 } + { a }_{ 2 } = 2k{ b }^{ 2 } . We may assume that a 1 a 2 \large\ { a }_{ 1 } \ge { a }_{ 2 } , and we have
a 1 k b 2 > 0 \large\ { a }_{ 1 } \ge k{ b }^{ 2 } > 0 .

Furthermore, since a 1 a 2 = k ( b 3 1 ) \large\ { a }_{ 1 }{ a }_{ 2 } = k\left( { b }^{ 3 } - 1 \right) , we obtain

0 a 2 = k ( b 3 1 ) a 1 k ( b 3 1 ) k b 2 < b . \huge\ 0 \le { a }_{ 2 } = \frac { k\left( { b }^{ 3 } - 1 \right) }{ { a }_{ 1 } } \le \frac { k\left( { b }^{ 3 } - 1 \right) }{ k{ b }^{ 2 } } < b.

From the above it follows that either a 2 = 0 \large\ {a}_{2} = 0 or 2 a 2 = b \large\ 2{ a }_{ 2 } = b .

If a 2 = 0 \large\ {a}_{2} = 0 then b 3 1 = 0 b^3 - 1 = 0 , and hence a 1 = 2 k , b = 1 {a}_{1} = 2k, b = 1

If a 2 = b / 2 , \large\ {a}_{2} = b/2, then k = b 2 / 4 , k = {b^2}/4, and a 1 = b 4 2 b 2 . \large\ { a }_{ 1 }=\frac { { b }^{ 4 } }{ 2 } -\frac { b }{ 2 }.

Hence , all satisfying pairs are ( 2 l , 1 , ) \huge\ \left( 2l,1, \right) or ( l , 2 l ) \huge\ \left( l, 2l \right) or ( 8 l 4 l , 2 l ) \huge\ \left( 8{ l }^{ 4 }-l, 2l \right) for some positive integer l l .

Plugging l = 1 l = 1 in one pair gives the least pair ( 2 , 1 ) (2, 1) ..

So, x y = 2 x^y = 2 .

Why a 2 a_2 can be zero ???

Kushal Bose - 4 years, 8 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...