Use Of Partial Fraction? Really?

Calculus Level 4

0 x 2 ( 12 x 2 1 ) ( 4 x 2 + 1 ) 3 ( 1 + x 2 ) d x = π A \large \int_0^\infty \dfrac{x^2(12x^2 - 1)}{(4x^2 + 1)^3 (1+x^2)} \, dx = \dfrac \pi A

If the equation above holds true for some constant A A , find A A .


The answer is 54.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Apr 18, 2016

As the title suggests, the problem can be solved by partial fraction. Let...

x 2 ( 12 x 2 1 ) ( 4 x 2 + 1 ) 3 ( 1 + x 2 ) = a ( 4 x 2 + 1 ) 3 + b ( 4 x 2 + 1 ) 2 + c 4 x 2 + 1 + d 1 + x 2 x 2 ( 12 x 2 1 ) = a ( 1 + x 2 ) + b ( 4 x 2 + 1 ) ( 1 + x 2 ) + c ( 4 x 2 + 1 ) 2 ( 1 + x 2 ) + d ( 4 x 2 + 1 ) 3 \begin{aligned} \frac{x^2(12x^2-1)}{(4x^2+1)^3(1+x^2)} & = \frac{a}{(4x^2+1)^3} + \frac{b}{(4x^2+1)^2} + \frac{c}{4x^2+1} + \frac{d}{1+x^2} \\ \Rightarrow x^2(12x^2-1) & = a(1+x^2) + b(4x^2+1)(1+x^2) + c(4x^2+1)^2(1+x^2) + d(4x^2+1)^3 \end{aligned}

x 2 = 1 4 : 3 4 a + b ( 0 ) + c ( 0 ) + d ( 0 ) = 1 4 ( 4 ) = 1 a = 4 3 x 2 = 1 : 27 d = 13 d = 13 27 x = 0 : a + b + c + d = 0 b + c = 23 27 x = 1 : 2 a + 10 b + 50 c + 125 d = 11 10 b + 50 c = 1850 27 b = 25 9 c = 52 27 \begin{aligned} x^2 = -\frac{1}{4}: \quad \frac{3}{4}a + b(0) + c(0) + d(0) & = - \frac{1}{4} (-4) = 1 \\ \Rightarrow a & = \frac{4}{3} \\ x^2 = -1: \quad -27d & = 13 \\ \Rightarrow d & = -\frac{13}{27} \\ x = 0: \quad a+b+c+d & = 0 \\ \Rightarrow b+c & = -\frac{23}{27} \\ x = 1: \quad 2a+10b+50c+125d & = 11 \\ \Rightarrow 10b+50c & = \frac{1850}{27} \\ \Rightarrow b & = - \frac{25}{9} \\ \Rightarrow c & = \frac{52}{27} \end{aligned}

Therefore, we have:

I = 0 x 2 ( 12 x 2 1 ) ( 4 x 2 + 1 ) 3 ( 1 + x 2 ) d x = 0 ( 4 3 ( 4 x 2 + 1 ) 3 25 9 ( 4 x 2 + 1 ) 2 + 52 27 ( 4 x 2 + 1 ) 13 27 ( 1 + x 2 ) ) d x = 0 π 2 ( 2 3 sec 4 θ 25 18 sec 2 θ + 26 27 13 27 ) d θ = 0 π 2 ( 2 cos 4 θ 3 25 cos 2 θ 18 + 13 27 ) d θ = 1 54 0 π 2 ( 36 cos 4 θ 75 cos 2 θ + 26 ) d θ = 1 54 0 π 2 [ ( 36 cos 4 θ 36 cos 2 θ + 9 ) 39 cos 2 θ + 17 ] d θ = 1 54 0 π 2 [ 9 cos 2 ( 2 θ ) 39 2 cos ( 2 θ ) + 1 ) + 17 ] d θ = 1 54 0 π 2 [ 9 2 ( cos ( 4 θ ) + 1 ) 39 2 ( cos ( 2 θ ) + 1 ) + 17 ] d θ = 1 54 0 π 2 [ 9 2 cos ( 4 θ ) 39 2 cos ( 2 θ ) + 2 ] d θ = 1 54 [ 9 8 sin ( 4 θ ) + 39 4 sin ( 2 θ ) + 2 θ ] 0 π 2 = π 54 \begin{aligned} I & = \int_0^\infty \frac{x^2(12x^2-1)}{(4x^2+1)^3(1+x^2)} \, dx \\ & = \int_0^\infty \left(\frac{4}{3(4x^2+1)^3} - \frac{25}{9(4x^2+1)^2} + \frac{52}{27(4x^2+1)} - \frac{13}{27(1+x^2)} \right) \, dx \\ & = \int_0^\frac{\pi}{2} \left(\frac{2}{3\sec^4 \theta} - \frac{25}{18\sec^2 \theta} + \frac{26}{27} - \frac{13}{27} \right) \, d \theta \\ & = \int_0^\frac{\pi}{2} \left(\frac{2\cos^4 \theta}{3} - \frac{25\cos^2 \theta}{18} + \frac{13}{27} \right) \, d \theta \\ & = \frac{1}{54} \int_0^\frac{\pi}{2} \left(36\cos^4 \theta - 75\cos^2 \theta + 26 \right) \, d \theta \\ & = \frac{1}{54} \int_0^\frac{\pi}{2} \left[(36\cos^4 \theta - 36\cos^2 \theta + 9) - 39\cos^2 \theta +17 \right] \, d \theta \\ & = \frac{1}{54} \int_0^\frac{\pi}{2} \left[9\cos^2 (2\theta) - \frac{39}{2}\cos (2\theta)+1) + 17 \right] \, d \theta \\ & = \frac{1}{54} \int_0^\frac{\pi}{2} \left[\frac{9}{2}(\cos(4\theta) +1) - \frac{39}{2}(\cos (2\theta)+1) + 17 \right] \, d \theta \\ & = \frac{1}{54} \int_0^\frac{\pi}{2} \left[\frac{9}{2}\cos(4\theta) - \frac{39}{2}\cos (2\theta) + 2 \right] \, d \theta \\ & = \frac{1}{54} \left[ - \frac{9}{8}\sin(4\theta) + \frac{39}{4}\sin (2\theta) +2 \theta \right]_0^\frac{\pi}{2} \\ & = \frac{\pi}{54} \end{aligned}

A = 54 \Rightarrow A = \boxed{54}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...