is a variable. If the area of the triangle is , find the length of the shortest side?
The side lengths of a triangle are shown above where
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Let a = 3 y − 2 , b = 4 y + 4 and c = y + 1 4 . From the Heron's Formula, we have
s = 2 a + b + c = 2 3 y − 2 + 4 y + 4 + y + 1 4 = 4 y + 8
It follows that,
s − a = 4 y − 8 − ( 3 y − 2 ) = y + 1 0
s − b = 4 y + 8 − ( 4 y + 4 ) = 4
s − c = 4 y + 8 − ( y + 1 4 ) = 3 y − 6
Then,
2 4 1 4 = ( 4 y + 8 ) ( y + 1 0 ) ( 4 ) ( 3 y − 6 )
Squaring both sides we get,
8 0 6 4 = ( 4 y + 8 ) ( y + 1 0 ) ( 4 ) ( 3 y − 6 )
Then simplify,
8 0 6 4 = ( 4 y 2 + 4 8 y + 8 0 ) ( 1 2 y − 2 4 )
8 0 6 4 = 4 8 y 3 − 9 6 y 2 + 5 7 6 y 2 − 1 1 5 2 y + 9 6 0 y − 1 9 2 0
4 8 y 3 + 4 8 0 y 2 − 1 9 2 y − 9 9 8 4 = 0
y 3 + 1 0 y 2 − 4 y − 2 0 8
Factor,
( y − 4 ) ( y 2 + 1 4 y + 5 2 ) = 0
y − 4 = 0
y = 4
Substituting y = 4 , we have
a = 3 y − 2 = 1 2 − 2 = 1 0
b = 4 y + 4 = 1 6 + 4 = 2 0
c = y + 1 4 = 1 8
The desired answer is a = 1 0 .
NOTE:
y 2 + 1 4 y + 5 2 = 0 has non-real and imaginary roots because b 2 < 4 a c : 1 4 2 < 4 ( 5 2 ) : 1 9 6 < 2 0 8