use the rational root theorem

Geometry Level pending

The side lengths of a triangle are shown above where y y is a variable. If the area of the triangle is 24 14 24\sqrt{14} , find the length of the shortest side?


The answer is 10.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Let a = 3 y 2 a=3y-2 , b = 4 y + 4 b=4y+4 and c = y + 14 c=y+14 . From the Heron's Formula, we have

s = a + b + c 2 = 3 y 2 + 4 y + 4 + y + 14 2 = 4 y + 8 s=\dfrac{a+b+c}{2}=\dfrac{3y-2+4y+4+y+14}{2}=4y+8

It follows that,

s a = 4 y 8 ( 3 y 2 ) = y + 10 s-a=4y-8-(3y-2)=y+10

s b = 4 y + 8 ( 4 y + 4 ) = 4 s-b=4y+8-(4y+4)=4

s c = 4 y + 8 ( y + 14 ) = 3 y 6 s-c=4y+8-(y+14)=3y-6

Then,

24 14 = ( 4 y + 8 ) ( y + 10 ) ( 4 ) ( 3 y 6 ) 24\sqrt{14}=\sqrt{(4y+8)(y+10)(4)(3y-6)}

Squaring both sides we get,

8064 = ( 4 y + 8 ) ( y + 10 ) ( 4 ) ( 3 y 6 ) 8064=(4y+8)(y+10)(4)(3y-6)

Then simplify,

8064 = ( 4 y 2 + 48 y + 80 ) ( 12 y 24 ) 8064=(4y^2+48y+80)(12y-24)

8064 = 48 y 3 96 y 2 + 576 y 2 1152 y + 960 y 1920 8064=48y^3-96y^2+576y^2-1152y+960y-1920

48 y 3 + 480 y 2 192 y 9984 = 0 48y^3+480y^2-192y-9984=0

y 3 + 10 y 2 4 y 208 y^3+10y^2-4y-208

Factor,

( y 4 ) ( y 2 + 14 y + 52 ) = 0 (y-4)(y^2+14y+52)=0

y 4 = 0 y-4=0

y = 4 y=4

Substituting y = 4 y=4 , we have

a = 3 y 2 = 12 2 = 10 a=3y-2=12-2=10

b = 4 y + 4 = 16 + 4 = 20 b=4y+4=16+4=20

c = y + 14 = 18 c=y+14=18

The desired answer is a = 10 \boxed{a=10} .

NOTE:

y 2 + 14 y + 52 = 0 y^2+14y+52=0 has non-real and imaginary roots because b 2 < 4 a c : 1 4 2 < 4 ( 52 ) : 196 < 208 b^2<4ac:14^2<4(52):196<208

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...