Use the wise properties

Calculus Level 3

2 π 5 π cot 1 ( tan x ) d x = ? \large \displaystyle \int_{-2\pi}^{5\pi} \cot^{-1}(\tan x) \, dx=\, ?

3 π 2 \frac{3 \pi}{2} 7 π 2 2 \frac{7\pi^2}{2} π 2 \pi^2 7 π 2 \frac{7\pi}{2}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Akhil Bansal
Nov 30, 2015

I = 2 π 5 π cot 1 ( tan x ) d x 1 \large I = \displaystyle \int_{-2\pi}^{5\pi} \cot^{-1}(\tan x) \, dx \quad \ \ \ \ldots \boxed{1} I = 2 π 5 π cot 1 ( tan ( 3 π x ) d x \large I = \displaystyle \int_{-2\pi}^{5\pi} \cot^{-1}(\tan (3\pi - x ) \, dx I = 2 π 5 π cot 1 ( tan x ) d x \large I = \displaystyle \int_{-2\pi}^{5\pi} \cot^{-1}(-\tan x) \, dx I = 2 π 5 π ( π cot 1 ( tan x ) ) d x 2 \large I = \displaystyle \int_{-2\pi}^{5\pi}(\pi - \cot^{-1}(\tan x)) \, dx \quad \ \ \ \ldots \boxed {2} Add 1 \boxed{1} and 2 \boxed{2} , 2 I = 2 π 5 π π d x \large 2I = \displaystyle \int_{-2\pi}^{5\pi} \pi \, dx I = 7 π 2 2 \large I = \dfrac{7\pi^2}{2}

@Sandeep Bhardwaj This would depend on which cotangent function you use. My answer for this problem is 0.

Calvin Lin Staff - 5 years, 6 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...