Intersection Mania

Geometry Level 3

Give ABC is a triangle have A B = k ; B A C ^ = 60 ; A C B ^ = 45 ; A D B C ( D B C ) ; B E A C ( E A C ) ; C F A B ( F B A ) AB=k;\quad \widehat { BAC } ={ 60 }^{ \circ };\quad \widehat { ACB } ={ 45 }^{ \circ };\quad AD\bot BC\quad (D\in BC);\quad \\ BE\bot AC\quad (E\in AC);\quad CF\bot AB\quad (F\in BA) . Calculated according to k k , the perimeter of Δ A B C \Delta ABC is:

p Δ A B C = k ( 3 + 5 + 2 ) 3 { p }_{ \Delta ABC }=\frac { k(3+\sqrt { 5 } +\sqrt { 2 } ) }{ 3 } p Δ A B C = 12 k 35 { p }_{ \Delta ABC }=12k\sqrt { 35 } None of these choices p Δ A B C = k ( 3 + 6 + 3 ) 2 { p }_{ \Delta ABC }=\frac { k(3+\sqrt { 6 } +\sqrt { 3 } ) }{ 2 }

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

I n Δ A B E h a v e : A E A B = c o s B A E = c o s 60 0 = 1 2 A E = A B 2 = k 2 . B E A B = s i n B A E = s i n 60 0 = 3 2 B E = A B 3 2 = k 3 2 . E a s y t o k n o w C E = B E = k 3 2 A C = A E + C E = k ( 1 + 3 ) 2 . B E C B = s i n B C E = s i n 45 0 = 2 2 B C = B E : 2 2 = k 6 2 . p Δ A B C = A B + A C + B C = k ( 3 + 6 + 3 ) 2 . *\quad In\quad \Delta ABE\quad have:\quad \frac { AE }{ AB } =cosBAE=cos{ 60 }^{ 0 }=\frac { 1 }{ 2 } \Rightarrow AE=\frac { AB }{ 2 } =\frac { k }{ 2 } .\\ *\frac { BE }{ AB } =sinBAE=sin{ 60 }^{ 0 }=\frac { \sqrt { 3 } }{ 2 } \Rightarrow BE=\frac { AB\sqrt { 3 } }{ 2 } =\frac { k\sqrt { 3 } }{ 2 } .\\ *Easy\quad to\quad know\quad CE=BE=\frac { k\sqrt { 3 } }{ 2 } \Rightarrow AC=AE+CE=\frac { k(1+\sqrt { 3 } ) }{ 2 } .\\ *\frac { BE }{ CB } =sinBCE=sin{ 45 }^{ 0 }=\frac { \sqrt { 2 } }{ 2 } \Rightarrow BC=BE:\frac { \sqrt { 2 } }{ 2 } =\frac { k\sqrt { 6 } }{ 2 } .\\ \Rightarrow { p }_{ \Delta ABC }=AB+AC+BC=\frac { k(3+\sqrt { 6 } +\sqrt { 3 } ) }{ 2 } .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...