Brainiac 7

Algebra Level 2

A value for ' b b ' such that

x 2 x^{2} + b x bx 1 -1 =0

x 2 + x + b = 0 x^{2} +x+b=0

have a common root!

source;IIT-paper 2

isqrt5 sqrt2 -sqrt2 -isqrt(3)

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Ahmed Arup Shihab
Feb 17, 2015

Subtracting second equation from the first,

x ( b 1 ) ( 1 + b ) = 0 x(b-1)-(1+b)=0

x = b + 1 b 1 \Rightarrow x=\frac{b+1}{b-1} , which is the common root.

Substitute this value of x x in either first or second equation we get,

b = ± i 3 b=\pm i\sqrt{3}

Anshuman Padhi
Sep 16, 2014

The two soln. are x^2 +bx-1=0 and x^2+x+b=0. by condition of common root, let a be the common root, a^2/(b^2+1)=a/(-1-b)=1/(1-b). thus, solving for b, we get b= -isqrt(3)

Sir, I think I've a better solution:

Let\quad \alpha \quad be\quad the\quad common\quad root\quad of\quad the\quad two\quad equations.\ Hence\quad { \alpha }^{ 2 }+\alpha b-1=0\quad and\quad { \alpha }^{ 2 }+{ \alpha }+b=0.\ Solving\quad the\quad two\quad equations:\ \frac { { \alpha }^{ 2 } }{ b^{ 2 }+1 } =\frac { { \alpha } }{ -(1+b) } =\frac { 1 }{ 1-b } \ \Longrightarrow { \quad { -(1+b)} }^{ 2 }=({ b }^{ 2 }+1)(1-b)\ \Longrightarrow { \quad (1+b) }^{ 2 }=({ b }^{ 2 }+1)(1-b)\ \Longrightarrow \quad -3={ b }^{ 2 }\ \Longrightarrow \quad b=\sqrt { 3i }

Neeraj Snappy - 6 years, 6 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...