If is a variable independent of , evaluate the expression above.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Note that this question lacks a condition: x ∈ [ 2 π n , 2 π n + 2 π ] , n ∈ Z , Otherwise, the expression will be dependent on x .
f ( x ) = ∫ 0 sin 2 x sin − 1 ( t ) d t + ∫ 0 cos 2 x cos − 1 ( t ) d t
Using the Fundamental Theorem of Calculus :
f ′ ( x ) = ( sin 2 x ) ′ sin − 1 ( sin 2 x ) + ( cos 2 x ) ′ cos − 1 ( cos 2 x )
= ( sin 2 x ) ′ sin − 1 ( ∣ sin x ∣ ) + ( cos 2 x ) ′ cos − 1 ( ∣ cos x ∣ )
= ( 2 sin x cos x ) ( x ) − ( 2 sin x cos x ) ( x ) = 0
Therefore: f ( x ) = constant for all x ∈ [ 2 π n , 2 π n + 2 π ] .So, it's enough to find f ( 4 π ) :
f ( 4 π ) = ∫ 0 2 1 sin − 1 ( t ) d t + ∫ 0 2 1 cos − 1 ( t ) d t
= = ∫ 0 2 1 ( sin − 1 ( t ) + cos − 1 ( t ) ) d t
= ∫ 0 2 1 2 π d t = 4 π