Zoom into this

Calculus Level 4

0 sin 2 ( x ) sin 1 ( t ) d t + 0 cos 2 ( x ) cos 1 ( t ) d t \large \int_0^{\sin^2(x)} \sin^{-1} (\sqrt t) \, dt + \int_0^{\cos^2(x)} \cos^{-1} (\sqrt t) \, dt

If x x is a variable independent of t t , evaluate the expression above.


The answer is 0.785.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Hasan Kassim
Jul 10, 2015

Note that this question lacks a condition: x [ 2 π n , 2 π n + π 2 ] , n Z x \in [2\pi n , 2\pi n +\frac{\pi}{2} ] , n\in Z , Otherwise, the expression will be dependent on x x .

f ( x ) = 0 sin 2 x sin 1 ( t ) d t + 0 cos 2 x cos 1 ( t ) d t \displaystyle f(x) = \int_0^{\sin ^2 x } \sin^{-1} (\sqrt{t}) dt + \int_0^{\cos ^2 x } \cos^{-1} (\sqrt{t}) dt

Using the Fundamental Theorem of Calculus :

f ( x ) = ( sin 2 x ) sin 1 ( sin 2 x ) + ( cos 2 x ) cos 1 ( cos 2 x ) \displaystyle f'(x) = (\sin ^2 x)' \sin^{-1} (\sqrt{\sin ^2 x}) + (\cos ^2 x)' \cos^{-1} (\sqrt{\cos ^2 x})

= ( sin 2 x ) sin 1 ( sin x ) + ( cos 2 x ) cos 1 ( cos x ) \displaystyle = (\sin ^2 x)' \sin^{-1} (|\sin x|) + (\cos ^2 x)' \cos^{-1} (|\cos x|)

= ( 2 sin x cos x ) ( x ) ( 2 sin x cos x ) ( x ) = 0 \displaystyle = (2\sin x \cos x )(x) - (2\sin x \cos x )(x) =0

Therefore: f ( x ) = constant f(x) = \text{constant} for all x [ 2 π n , 2 π n + π 2 ] x \in [2\pi n , 2\pi n +\frac{\pi}{2} ] .So, it's enough to find f ( π 4 ) f(\frac{\pi}{4}) :

f ( π 4 ) = 0 1 2 sin 1 ( t ) d t + 0 1 2 cos 1 ( t ) d t \displaystyle f(\frac{\pi}{4}) = \int_0^{\frac{1}{2} } \sin^{-1} (\sqrt{t}) dt + \int_0^{\frac{1}{2} } \cos^{-1} (\sqrt{t}) dt

= = 0 1 2 ( sin 1 ( t ) + cos 1 ( t ) ) d t \displaystyle = = \int_0^{\frac{1}{2} } (\sin^{-1} (\sqrt{t}) +\cos^{-1} (\sqrt{t}) ) dt

= 0 1 2 π 2 d t = π 4 \displaystyle = \int_0^{\frac{1}{2} } \frac{\pi}{2} dt = \boxed{\frac{\pi}{4} }

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...