∫ 0 π e cos x + 1 sin x ( sin x + 1 ) e sin x + cos x d x = a + b ∫ 0 π e sin x d x
Given the equation above, where a and b are positive rational numbers, find the value of 1 0 0 ( a 2 + b 2 ) .
Note: ∫ 0 π e sin x d x is irrational.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
1. Subtracting and adding 1 .
∫ 0 π e cos x + 1 sin x ( sin x + 1 ) e sin x + cos x d x = ∫ 0 π e cos x + 1 ( sin 2 x − 1 + sin x + 1 ) e sin x + cos x d x = ∫ 0 π e cos x + 1 ( sin x − cos 2 x + 1 ) e sin x + cos x d x = ∫ 0 π e cos x + 1 e sin x + cos x d x + ∫ 0 π e cos x + 1 ( sin x − cos 2 x ) e sin x + cos x d x
2. Figuring out the first one.
Let f ( x ) = e sin x and h ( x ) = e cos x + 1 e cos x .
Notice that f ( x ) = f ( π − x ) and h ( x ) + h ( π − x ) = e cos x + 1 e cos x + e − cos x + 1 e − cos x = 1 .
∫ 0 π e cos x + 1 e sin x + cos x d x = ∫ 0 π f ( x ) h ( x ) d x = ∫ 0 π f ( x ) ( 1 − h ( π − x ) ) d x = ∫ 0 π f ( x ) d x − ∫ 0 π f ( π − x ) h ( π − x ) d x = ∫ 0 π e sin x d x − ∫ 0 π f ( t ) h ( t ) d t π − x = t ; − d x = d t .
Therefore, ∫ 0 π e cos x + 1 e sin x + cos x d x = 2 1 ∫ 0 π e sin x d x .
3. Figuring out the second one.
Let g ( x ) = ( sin x − cos 2 x ) e sin x .
You will notice that g ( x ) = g ( π − x ) .
Then using the same method, we obtain ∫ 0 π g ( x ) h ( x ) d x = 2 1 ∫ 0 π g ( x ) d x .
4. Figuring out the value of ∫ 0 π g ( x ) d x .
We're trying to get ∫ 0 π ( sin x − cos 2 x ) e sin x d x , but firstly, we'll mess around with
∫ sin x e sin x d x = ( − cos x ) ⋅ ( e sin x ) − ∫ ( − cos x ) ⋅ ( cos x e sin x ) d x + C = − cos x e sin x + ∫ cos 2 x e sin x d x + C
(!!!) From this, we can see that ∫ ( sin x − cos 2 x ) e sin x d x = − cos x e sin x + C , leading to
∫ 0 π g ( x ) d x = 1 − ( − 1 ) = 2 .
5. Sum up all the things we figured out.
∫ 0 π e cos x + 1 sin x ( sin x + 1 ) e sin x + cos x d x = ∫ 0 π e cos x + 1 e sin x + cos x d x + ∫ 0 π e cos x + 1 ( sin x − cos 2 x ) e sin x + cos x d x = ∫ 0 π f ( x ) h ( x ) d x + ∫ 0 π g ( x ) h ( x ) d x = 2 1 ∫ 0 π f ( x ) d x + 2 1 ∫ 0 π g ( x ) d x = 2 1 ∫ 0 π e sin x d x + 1 .
From above, a = 1 and b = 2 1 .
Therefore, 1 0 0 ( a 2 + b 2 ) = 1 2 5 .
Problem Loading...
Note Loading...
Set Loading...
Putting y = π − x we have I = ∫ 0 π e cos x + 1 sin x ( sin x + 1 ) e sin x + cos x d x = ∫ 0 π e − cos y + 1 sin y ( sin y + 1 ) e sin y − cos y d y = ∫ 0 π e cos x + 1 sin x ( sin x + 1 ) e sin x d x and hence I = 2 1 ∫ 0 π sin x ( sin x + 1 ) e sin x d x = 2 1 ∫ 0 π ( sin x − cos 2 x + 1 ) e sin x d x = 2 1 [ − cos x e sin x ] 0 π + 2 1 ∫ 0 π e sin x d x = 1 + 2 1 ∫ 0 π e sin x d x making the answer 1 0 0 ( 1 + 4 1 ) = 1 2 5 .