Using All The Basic Techniques of Integration

Calculus Level 5

0 π sin x ( sin x + 1 ) e sin x + cos x e cos x + 1 d x = a + b 0 π e sin x d x \large \int_{0}^{\pi} \frac{\sin x(\sin x + 1)e^{\sin x + \cos x}}{e^{\cos x}+1} dx = a + b\int_{0}^{\pi}e^{\sin x} dx

Given the equation above, where a a and b b are positive rational numbers, find the value of 100 ( a 2 + b 2 ) . 100(a^2+b^2).


Note: 0 π e sin x d x \displaystyle \int_{0}^{\pi}e^{\sin x} dx is irrational.


The answer is 125.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Mark Hennings
Sep 16, 2017

Putting y = π x y =\pi - x we have I = 0 π sin x ( sin x + 1 ) e sin x + cos x e cos x + 1 d x = 0 π sin y ( sin y + 1 ) e sin y cos y e cos y + 1 d y = 0 π sin x ( sin x + 1 ) e sin x e cos x + 1 d x I \; = \; \int_0^\pi \frac{\sin x(\sin x +1)e^{\sin x + \cos x}}{e^{\cos x} + 1}\,dx \; = \; \int_0^\pi \frac{\sin y(\sin y + 1)e^{\sin y - \cos y}}{e^{-\cos y} + 1}\,dy \; = \; \int_0^\pi \frac{\sin x (\sin x + 1) e^{\sin x}}{e^{\cos x} + 1}\,dx and hence I = 1 2 0 π sin x ( sin x + 1 ) e sin x d x = 1 2 0 π ( sin x cos 2 x + 1 ) e sin x d x = 1 2 [ cos x e sin x ] 0 π + 1 2 0 π e sin x d x = 1 + 1 2 0 π e sin x d x \begin{aligned} I & = \; \frac12\int_0^\pi \sin x(\sin x + 1)e^{\sin x}\,dx \; = \; \frac12\int_0^\pi \big(\sin x - \cos^2x + 1\big)e^{\sin x}\,dx \; = \; \frac12\Big[-\cos x e^{\sin x}\Big]_0^\pi + \frac12\int_0^\pi e^{\sin x}\,dx \\ & = \; 1 + \frac12\int_0^\pi e^{\sin x}\,dx \end{aligned} making the answer 100 ( 1 + 1 4 ) = 125 100\big(1 + \frac14\big) = \boxed{125} .

Boi (보이)
Sep 15, 2017

1. Subtracting and adding 1. 1.

0 π sin x ( sin x + 1 ) e sin x + cos x e cos x + 1 d x = 0 π ( sin 2 x 1 + sin x + 1 ) e sin x + cos x e cos x + 1 d x = 0 π ( sin x cos 2 x + 1 ) e sin x + cos x e cos x + 1 d x = 0 π e sin x + cos x e cos x + 1 d x + 0 π ( sin x cos 2 x ) e sin x + cos x e cos x + 1 d x \begin{aligned} \int_{0}^{\pi} \frac{\sin x(\sin x + 1)e^{\sin x + \cos x}}{e^{\cos x}+1} dx &=\int_{0}^{\pi} \frac{(\sin^2 x \, {\color{#D61F06} -1}+ \sin x \, {\color{#D61F06} +1})e^{\sin x + \cos x}}{e^{\cos x}+1} dx \\ & = \int_{0}^{\pi} \frac{(\sin x - \cos^2 x + 1)e^{\sin x + \cos x}}{e^{\cos x}+1} dx \\ & = \int_{0}^{\pi} \frac{e^{\sin x + \cos x}}{e^{\cos x}+1} dx + \int_{0}^{\pi} \frac{(\sin x - \cos^2 x)e^{\sin x + \cos x}}{e^{\cos x}+1} dx\\ \end{aligned}


2. Figuring out the first one.

Let f ( x ) = e sin x f(x)=e^{\sin x} and h ( x ) = e cos x e cos x + 1 . h(x)=\dfrac{e^{\cos x}}{e^{\cos x}+1}.

Notice that f ( x ) = f ( π x ) f(x)=f(\pi-x) and h ( x ) + h ( π x ) = e cos x e cos x + 1 + e cos x e cos x + 1 = 1. h(x)+h(\pi-x)=\dfrac{e^{\cos x}}{e^{\cos x}+1}+\dfrac{e^{-\cos x}}{e^{-\cos x}+1}=1.

0 π e sin x + cos x e cos x + 1 d x = 0 π f ( x ) h ( x ) d x = 0 π f ( x ) ( 1 h ( π x ) ) d x = 0 π f ( x ) d x 0 π f ( π x ) h ( π x ) d x = 0 π e sin x d x 0 π f ( t ) h ( t ) d t π x = t ; d x = d t . \begin{aligned} \int_{0}^{\pi} \frac{e^{\sin x + \cos x}}{e^{\cos x}+1} dx & = \int_{0}^{\pi} f(x)h(x) \, dx \\ & = \int_{0}^{\pi} f(x)(1-h(\pi-x)) \, dx \\ & = \int_{0}^{\pi} f(x) \,dx - \int_{0}^{\pi} f(\pi-x)h(\pi-x) \, dx\\ & = \int_{0}^{\pi}e^{\sin x} dx - \int_{0}^{\pi} f(t)h(t) \, dt && \small \color{#3D99F6} \pi-x=t;~-dx=dt. \\ \end{aligned}

Therefore, 0 π e sin x + cos x e cos x + 1 d x = 1 2 0 π e sin x d x . \displaystyle \int_{0}^{\pi} \frac{e^{\sin x + \cos x}}{e^{\cos x}+1} dx = \frac{1}{2}\int_{0}^{\pi}e^{\sin x} dx.


3. Figuring out the second one.

Let g ( x ) = ( sin x cos 2 x ) e sin x . g(x)=(\sin x - \cos^2 x)e^{\sin x}.

You will notice that g ( x ) = g ( π x ) . g(x)=g(\pi-x).

Then using the same method, we obtain 0 π g ( x ) h ( x ) d x = 1 2 0 π g ( x ) d x . \displaystyle \int_{0}^{\pi} g(x)h(x)\,dx=\frac{1}{2}\int_{0}^{\pi}g(x)\,dx.


4. Figuring out the value of 0 π g ( x ) d x . \displaystyle \int_{0}^{\pi}g(x)\,dx.

We're trying to get 0 π ( sin x cos 2 x ) e sin x d x , \displaystyle \int_{0}^{\pi} (\sin x - \cos^2 x)e^{\sin x} \, dx, but firstly, we'll mess around with

sin x e sin x d x = ( cos x ) ( e sin x ) ( cos x ) ( cos x e sin x ) d x + C = cos x e sin x + cos 2 x e sin x d x + C \begin{aligned} & \int \sin x e^{\sin x} \, dx \\ & = (-\cos x)\cdot (e^{\sin x}) - \int (-\cos x) \cdot (\cos x e^{\sin x}) \, dx + C\\ & = -\cos x e^{\sin x} + \int \cos^2 x e^{\sin x} \, dx + C \end{aligned}

(!!!) From this, we can see that ( sin x cos 2 x ) e sin x d x = cos x e sin x + C , \displaystyle \int (\sin x - \cos^2 x)e^{\sin x} \, dx=-\cos x e^{\sin x} + C, leading to

0 π g ( x ) d x = 1 ( 1 ) = 2. \displaystyle \int_{0}^{\pi}g(x)\,dx=1 - (-1)=2.


5. Sum up all the things we figured out.

0 π sin x ( sin x + 1 ) e sin x + cos x e cos x + 1 d x = 0 π e sin x + cos x e cos x + 1 d x + 0 π ( sin x cos 2 x ) e sin x + cos x e cos x + 1 d x = 0 π f ( x ) h ( x ) d x + 0 π g ( x ) h ( x ) d x = 1 2 0 π f ( x ) d x + 1 2 0 π g ( x ) d x = 1 2 0 π e sin x d x + 1. \begin{aligned} & \int_{0}^{\pi} \frac{\sin x(\sin x + 1)e^{\sin x + \cos x}}{e^{\cos x}+1} dx \\ & = \int_{0}^{\pi} \frac{e^{\sin x + \cos x}}{e^{\cos x}+1} dx + \int_{0}^{\pi} \frac{(\sin x - \cos^2 x)e^{\sin x + \cos x}}{e^{\cos x}+1} dx \\ & = \int_{0}^{\pi} f(x)h(x) \,dx + \int_{0}^{\pi} g(x)h(x) \, dx \\ & = \frac{1}{2}\int_{0}^{\pi} f(x) \, dx + \dfrac{1}{2}\int_{0}^{\pi} g(x) \, dx \\ & = \frac{1}{2}\int_{0}^{\pi}e^{\sin x} dx + 1. \end{aligned}

From above, a = 1 a=1 and b = 1 2 . b=\dfrac{1}{2}.

Therefore, 100 ( a 2 + b 2 ) = 125 . 100(a^2+b^2)=\boxed{125}.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...