Using an affine transformation to cryptanalyze an enciphered message

Number Theory Level pending

Let A 0 , B 1 , , Z 25 A \rightarrow 0, B \rightarrow 1, \ldots , Z \rightarrow 25 .

The most common letters in the English alphabet are E E and T T , respectively.

Suppose we know that an affine transformation of the form a P + b C m o d 26 ( 0 < = C < = 25 ) a * P + b \equiv C \mod{26} \: (0 <= C <= 25) , has been used for enciphering the enciphered message: U S L E L J U T C C Y R T P S U R K L T Y G G F V E L Y U S L R Y X USLEL \: JUTCC \: \: YRTPS \: \: URKLT \: \: YGGFV \: \: ELYUS \: \: LRYX .

Cryptanalyze the enciphered message using the frequency of letters in the enciphered message. If L j L_{j} has the largest frequency and L k L_{k} has the second largest frequency, then let E E and T T correspond to L j L_{j} and L k L_{k} respectively. If L k L_{k} and L m L_{m} have the same frequency then choose one of the two, say L k L_{k} , and determine if the message is intelligible. If not then try using L j L_{j} and L m L_{m} . I constructed the problem so that the message will be intelligible, but you may have to do some guess work.

When you obtain an intelligible message, express the answer as a string of integers. List a string of the first 33 integers.

Note: The site only allows 33.

What does the message state?


The answer is 197414181901515171402719141140171.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rocco Dalto
Jan 15, 2017

In the enciphered text the letters L L and U U and Y Y have the largest number of occurrences, where L L occurs 5 5 times and both letters U U and Y Y occur 4 4 times.

Choosing L E L \rightarrow E and U T U \rightarrow T

\implies

4 a + b 11 m o d 26 4 * a + b \equiv 11 \mod{26} 19 a + b 20 m o d 26 19 * a + b \equiv 20 \mod{26}

15 a 9 m o d 26 \implies 15 * a \equiv 9 \mod{26}

Using a repeated application of the Euclidean algorithm you can verify that 7 7 is an inverse of 15 15 modulo 26 26 \implies a 63 m o d 26 11 m o d 26 b 33 m o d 26 7 m o d 26 19 m o d 26. a \equiv 63 \mod 26 \equiv 11 \mod{26} \implies b \equiv -33 \mod{26} \equiv -7 \mod{26} \equiv 19 \mod{26}.

11 P ( C 19 ) m o d 26 \implies 11 * P \equiv (C - 19) \mod{26}

You can use a repeated application of the Euclidean algorithm to verify that 19 19 is an inverse of 11 11 modulo 26 26 \implies

P 19 ( C 19 ) m o d 26 ( 19 C 23 ) m o d 26 ( 19 C + 3 ) m o d 26 \implies P \equiv 19 * (C - 19) \mod{26} \equiv (19* C - 23) \mod{26} \equiv (19 * C + 3) \mod{26}

P ( 19 C + 3 ) m o d 26. \therefore P \equiv (19 * C + 3) \mod{26} .

Now we attempt the tedious task of determining if we obtain an intelligible message.

Using each C j , C_{j}, where ( 1 < = j < = 34 ) (1 <= j <= 34) in the enciphered message U S L E L J U T C C Y R T P S U R K L T Y G G F V E L Y U S L R Y X USLEL \: JUTCC \: \: YRTPS \: \: URKLT \: \: YGGFV \: \: ELYUS \: \: LRYX we obtain:

P 383 m o d 26 19 m o d 26 P \equiv 383 \mod{26} \equiv 19 \mod{26} which corresponds to the letter T T .

P 345 m o d 26 7 m o d 26 P \equiv 345 \mod{26} \equiv 7 \mod{26} which corresponds to the letter H H .

p 212 m o d 26 4 m o d 26 p \equiv 212 \mod{26} \equiv 4 \mod{26} which corresponds to the letter E E .

P 79 m o d 26 1 m o d 26 P \equiv 79 \mod{26} \equiv 1 \mod{26} which corresponds to the letter B B .

E \hspace{260pt} E

P 175 m o d 26 18 m o d 26 P \equiv 175 \mod{26} \equiv 18 \mod{26} which corresponds to the letter S S .

T \hspace{260pt} T

P 364 m o d 26 0 m o d 26 P \equiv 364 \mod{26} \equiv 0 \mod{26} which corresponds to the letter A A .

P 41 m o d 26 15 m o d 26 P \equiv 41 \mod{26} \equiv 15 \mod{26} which corresponds to the letter P P .

P \hspace{260pt} P

P 549 m o d 26 17 m o d 26 P \equiv 549 \mod{26} \equiv 17 \mod{26} which corresponds to the letter R R .

P 326 m o d 26 14 m o d 26 P \equiv 326 \mod{26} \equiv 14 \mod{26} which corresponds to the letter O O .

A \hspace{260pt} A

P 288 m o d 26 2 m o d 26 P \equiv 288 \mod{26} \equiv 2 \mod{26} which corresponds to the letter C C .

H \hspace{260pt} H

T \hspace{260pt} T

O \hspace{260pt} O

P 193 m o d 26 11 m o d 26 P \equiv 193 \mod{26} \equiv 11 \mod{26} which corresponds to the letter L L .

E \hspace{260pt} E

A \hspace{260pt} A

R \hspace{260pt} R

P 117 m o d 26 13 m o d 26 P \equiv 117 \mod{26} \equiv 13 \mod{26} which corresponds to the letter N N .

N \hspace{260pt} N

P 98 m o d 26 20 m o d 26 P \equiv 98 \mod{26} \equiv 20 \mod{26} which corresponds to the letter U U .

P 402 m o d 26 12 m o d 26 P \equiv 402 \mod{26} \equiv 12 \mod{26} which corresponds to the letter M M

B \hspace{260pt} B

E \hspace{260pt} E

R \hspace{260pt} R

T \hspace{260pt} T

H \hspace{260pt} H

E \hspace{260pt} E

O \hspace{260pt} O

R \hspace{260pt} R

P 440 m o d 26 24 m o d 26 P \equiv 440 \mod{26} \equiv 24 \mod{26} which corresponds to the letter Y Y .

T H E B E S T A P P R O A C H T O L E A R N N U M B E R T H E O R Y THEBE \: STAPP \: \: ROACH \: \: TOLEA \: \: RNNUM \: \: BERTH \: \: EORY

T H E M E S S A G E I S : THE \: MESSAGE \: IS:

T H E B E S T A P P R O A C H T O L E A R N N U M B E R T H E O R Y THE \: BEST \: APPROACH \: TO \: LEARN \: NUMBER \: \: THEORY

The string of integers is:

1974141819015151714027191411401713813613201214171974141724 \boxed{1974141819015151714027191411401713813613201214171974141724}

If this this didn't work we could try choosing L E L \rightarrow E and Y T Y \rightarrow T

The number of occurrences of the enciphered letters:

L : 5 L: 5

U : 4 U: 4

Y : 4 Y: 4

S : 3 S: 3

J : 3 J: 3

R : 3 R: 3

C : 2 C: 2

E : 2 E: 2

G : 2 G: 2

J : 1 J: 1

P : 1 P: 1

K : 1 K: 1

F : 1 F: 1

V : 1 V: 1

X : 1 X: 1

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...