Using binomial theorem

Level 2

In the expansion of ( x 18 k 17 + k 16 x 15 ) 19 \large (\frac{x^{18}}{k^{17}}+\frac{k^{16}}{x^{15}})^{19} , the coefficient of x 12 x^{12} is 92378 92378 .

Find the value of k k .

Note :
k k is a real number.


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Tommy Li
Jun 7, 2016

( x 18 k 17 + k 16 x 15 ) 19 \large (\frac{x^{18}}{k^{17}}+\frac{k^{16}}{x^{15}})^{19}

General term: 19 C r × ( x 18 k 17 ) 19 r × ( k 16 x 15 ) r _{19}C_{r} \times (\frac{x^{18}}{k^{17}})^{19-r} \times (\frac{k^{16}}{x^{15}})^{r}

= 19 C r × ( x 342 18 r ) ( k 323 + 17 r ) × ( k 16 r ) ( x 15 r ) =_{19}C_{r} \times (x^{342-18r})(k^{-323+17r}) \times (k^{16r})(x^{-15r})

= 19 C r × ( k 323 + 33 r ) ( x 342 33 r ) =_{19}C_{r} \times (k^{-323+33r})(x^{342-33r})

Put r = 10 r=10 :

19 C 10 × ( k 323 + 33 ( 10 ) ) ( x 342 33 ( 10 ) ) _{19}C_{10} \times (k^{-323+33(10)})(x^{342-33(10)})

= 92378 ( k 7 ) ( x 12 ) =92378(k^{7})(x^{12})

then, 92378 ( k 7 ) = 92378 92378(k^{7})=92378

k = 1 k=1

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...