Using Cauchy-Schwarz Inequality

Algebra Level 4

If a , b , c , d R a,b,c,d\in\mathbb{R} and a + 2 b + 3 c + 4 d = 10 , a+2b+3c+4d=\sqrt{10}, what's the minimum value of a 2 + b 2 + c 2 + d 2 + ( a + b + c + d ) 2 ? a^{2}+b^{2}+c^{2}+d^{2}+(a+b+c+d)^{2}?


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Haosen Chen
Mar 24, 2018

a + 2 b + 3 c + 4 d = 10 ( 1 t ) a + ( 2 t ) b + ( 3 t ) c + ( 4 t ) d + t ( a + b + c + d ) = 10 a+2b+3c+4d=\sqrt{10}\Longrightarrow (1-t)a+(2-t)b+(3-t)c+(4-t)d+t(a+b+c+d)=\sqrt{10} ,for any real number t.

By Cauchy-Schwarz Inequality,

( ( 1 t ) 2 + ( 2 t ) 2 + ( 3 t ) 2 + ( 4 t ) 2 + t 2 ) ( ( a 2 + b 2 + c 2 + d 2 + ( a + b + c + d ) 2 ) \displaystyle\Big( (1-t)^{2}+(2-t)^{2}+(3-t)^{2}+(4-t)^{2}+t^{2} \Big)\Big((a^{2}+b^{2}+c^{2}+d^{2}+(a+b+c+d)^{2}\Big) ( ( 1 t ) a + ( 2 t ) b + ( 3 t ) c + ( 4 t ) d + t ( a + b + c + d ) ) 2 = 10 \ge \Big((1-t)a+(2-t)b+(3-t)c+(4-t)d+t(a+b+c+d)\Big)^{2}=10

a 2 + b 2 + c 2 + d 2 + ( a + b + c + d ) 2 10 5 ( t 2 ) 2 + 10 = f ( t ) \displaystyle\Longrightarrow a^{2}+b^{2}+c^{2}+d^{2}+(a+b+c+d)^{2}\ge \frac{10}{5(t-2)^{2}+10} =f(t) .

Since it holds for any real number t, so the left side should larger than or equal to the maximum of f(t),which is f ( 2 ) = 1 f(2)=1 .

In case t = 2 , a = 10 10 , b = 0 , c = 10 10 , d = 10 5 t=2,a=-\frac{\sqrt{10}}{10},b=0, c=\frac{\sqrt{10}}{10},d=\frac{\sqrt{10}}{5} , the left side is exactly equal to 1.

So the minimum is 1 \boxed{1} .

Good one...:)

Messi Nadal - 2 years, 8 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...