Using familiar lemma

Calculus Level 5

Let L = lim n k = 1 n 1 n + π ( k ) ln n , \displaystyle L= \lim_{n\to\infty} \sum_{k=1}^n \dfrac{1}{n+\pi(k)\ln n}, where π ( k ) \pi(k) denotes the number of primes not exceeding k . k.

Find the closed form of L L and submit your answer as 1000 L . \big\lceil 1000L\big\rceil.


The answer is 694.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Let l m = inf k m π ( k ) ln k k , u m = sup k m π ( k ) ln k k \displaystyle l_m=\underset{k\ge m}{\mathop{\inf }}\pi \left( k \right)\frac{\ln k}{k}, u_m=\underset{k\ge m}{\mathop{\sup }}\pi \left( k \right)\frac{\ln k}{k} then l m 1 l_m\to1 and u m 1 u_m\to 1 by the Prime Number Theorem.

For n k m > 1 n\ge k\ge m >1 , using k n ln n k 1 e \dfrac{k}{n}\ln\dfrac{n}{k}\le\dfrac{1}{e} we have

n + π ( k ) ln n n + l m k ln n ln k n + l m k n + π ( k ) ln n n + u m k + u m k ln n k ln k n + u m k + u m n e ln m \begin{array}{lll} &n+\pi\left(k\right)\ln n &\ge &n+l_mk\dfrac{\ln n}{\ln k}\ge n+l_mk \\ &n+\pi\left(k\right)\ln n &\le &n+u_mk+u_mk\dfrac{\ln \dfrac{n}{k}}{\ln k}\le n+u_mk+u_m\dfrac{n}{e\ln m} \end{array}

Then

lim sup n k = 1 n 1 n + π ( k ) ln n = lim sup n k = m n 1 n + π ( k ) ln n lim sup n k = m n 1 n + l m k = lim sup n 1 n k = 1 n 1 1 + l m k n = 0 1 d x 1 + l m x \begin{array}{rl} \displaystyle\underset{n\to \infty }{\mathop{\lim \sup }}\sum\limits_{k=1}^{n}{\frac{1}{n+\pi \left( k \right)\ln n}}&\displaystyle=\underset{n\to \infty }{\mathop{\lim \sup }}\sum\limits_{k=m}^{n}{\frac{1}{n+\pi \left( k \right)\ln n}} \\ &\displaystyle \le \underset{n\to \infty }{\mathop{\lim \sup }}\sum\limits_{k=m}^{n}{\frac{1}{n+l_m k}} \\ &\displaystyle =\underset{n\to \infty }{\mathop{\lim \sup }}\frac{1}{n}\sum\limits_{k=1}^{n}{\frac{1}{1+l_m\frac{k}{n}}}=\int\limits_0^1 \frac{\text{d}x}{1+l_m x} \end{array}

In a similar way we get lim inf n k = 1 n 1 n + π ( k ) ln n 0 1 d x 1 + u m x + u m e ln m \displaystyle\underset{n\to \infty }{\mathop{\lim \inf }}\sum\limits_{k=1}^{n}{\frac{1}{n+\pi \left( k \right)\ln n}}\ge \int\limits_0^1\frac{\text{d}x}{1+u_m x+\dfrac{u_m}{e\ln m}}

Taking m m\to\infty , the limit is 0 1 d x 1 + x = ln 2 \displaystyle\int_0^1 \frac{\text{d}x}{1+x}=\ln 2 .

So 1000 L = 694 \left\lceil 1000L\right\rceil =\boxed{694} .

I like this. Do you have any references for seeing more of this technique?

Leonel Castillo - 2 years, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...