Using Riemann integral

Calculus Level 3

lim n k = n k = n p 1 k \large \lim_{n\to\infty} \sum_{k=n}^{k=np} \dfrac1k

If p p is a positive integer, compute the limit above.

ln 2 \ln 2 ln ( p ! ) \ln (p!) ln p \ln p

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Aareyan Manzoor
Mar 6, 2016

first, lim n ( ( k = 1 n 1 k ) ln ( n ) ) = γ \lim_{n\to\infty}\left(\left(\sum_{k=1}^n \dfrac{1}{k}\right)-\ln(n)\right)=\gamma so, lim n ( k = n n p 1 k ) = lim n ( k = 1 n p 1 k k = 1 n 1 1 k ) = lim n ( γ + ln ( n p ) ( γ + ln ( n 1 ) ) ) = ln ( p ) \lim_{n\to\infty}\left(\sum_{k=n}^{np} \dfrac{1}{k}\right)=\lim_{n\to\infty}\left(\sum_{k=1}^{np} \dfrac{1}{k}-\sum_{k=1}^{n-1} \dfrac{1}{k}\right)\\=\lim_{n\to\infty}\left(\gamma+\ln(np)-(\gamma+\ln(n-1))\right)= \ln(p)

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...