Using the Sine Rule for Ambiguous Cases

Geometry Level 3

Click this link if it is hard to understand the picture.

Firstly, Solve A B C \triangle ABC where A ^ = 5 5 , b 1 = b 2 = 14.3 a n d b = 16.3 c m \hat { A } =55^{ \circ },\quad b_{ 1 }=b_{ 2 }=14.3㎝\quad and\quad b=16.3cm .

Find out the sum of all the angles and add it to the sum of all the sides. (Correct to 1 decimal places.)

i.e.,

A ^ + B 1 ^ + B 2 ^ + C 1 ^ + C 2 ^ + A B 1 + A B 2 + B 1 C + B 2 C + A C o r A ^ + B 1 ^ + B 2 ^ + C 1 ^ + C 2 ^ + c 1 + c 2 + a 1 + a 2 + b \hat { A } +\hat { B_{ 1 } } +\hat { B_{ 2 } } +\hat { C_{ 1 } } +\hat { C_{ 2 } } +AB_{ 1 }+AB_{ 2 }+B_{ 1 }C+B_{ 2 }C+AC\\ or\quad \\ \hat { A } +\hat { B_{ 1 } } +\hat { B_{ 2 } } +\hat { C_{ 1 } } +\hat { C_{ 2 } } +c_{ 1 }+c_{ 2 }+a_{ 1 }+a_{ 2 }+b\\

(They both have the same value.)

For clarification, A ^ = 5 5 B 1 C = a 1 = 14.3 B 2 C = a 2 = 14.3 A C = b = 16.3 A B 1 = c 1 A B 2 = A B 1 + B 1 B 2 = c 2 \hat { A } =55^{ \circ }\\ B_{ 1 }C=a_{ 1 }=14.3\\ B_{ 2 }C=a_{ 2 }=14.3\\ AC=b=16.3\\ AB_{ 1 }=c_{ 1 }\\ AB_{ 2 }=AB_{ 1 }+B_{ 1 }B_{ 2 }=c_{ 2 }\\

Details and Assumptions:

If your answer is θ + α + β + x \theta ^{ \circ }+\alpha ^{ \circ }+\beta ^{ \circ }+x cm + y +y cm, write your answer as θ + α + β + x + y \theta +\alpha +\beta +x +y .


The answer is 368.6.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Armain Labeeb
Jun 23, 2016

STEP 1: SOLVING A B C \triangle ABC :

A set of given information that would give two possible sets of solutions is said to be ambiguous .

Thus, for ambiguous cases , two solution sets will be obtained.

From the diagram, the given angle is acute and the side facing the given angle is less than the other given side. The two sets of answers are obtained using the Sine Rule which implies that:

a sin A = b sin B = c sin C \frac { a }{ \sin { A } } =\frac { b }{ \sin { B } } =\frac { c }{ \sin { C } }

Now,

14.3 sin 55 ° = 16.3 sin B sin B = 16.3 sin 55 ° 14.3 = 0.9337 B ^ = sin 1 0.9337 = 69.0 ° o r 111.0 ° \quad \quad \frac { 14.3 }{ \sin\quad 55° } =\frac { 16.3 }{ \sin\quad B } \\ \therefore \quad \sin\quad B\quad =\quad \frac { 16.3\quad \sin\quad 55° }{ 14.3 } \\ \quad \quad \quad \quad \quad \quad =0.9337\\ \hat { B } \quad =\quad \sin^{ -1 }\quad 0.9337\\ \quad \quad =\quad 69.0°\quad or\quad 111.0°

When B ^ = 69.0 ° , C ^ = 180 ° ( 69 ° + 55 ° ) = 56 ° \hat { B } =\quad 69.0°,\quad \hat { C } =180°-(69°+55°)=56°

Now,

16.3 sin 69 ° = c sin 56 ° c = 16.3 sin 56 ° sin 69 ° 14.5 c m \quad \quad \frac { 16.3 }{ \sin { \quad 69° } } =\frac { c }{ \sin { \quad 56° } } \\ \therefore \quad \quad \quad c\quad =\frac { 16.3\quad \sin { \quad 56° } }{ \sin { \quad 69° } } \approx 14.5cm\quad \quad

When B ^ = 111.0 ° , C ^ = 180 ° ( 111 ° + 55 ° ) = 14 ° \hat { B } =\quad 111.0°,\quad \hat { C } =180°-(111°+55°)=14°

Now,

16.3 sin 69 ° = c sin 14 ° c = 16.3 sin 14 ° sin 69 ° 4.2 c m \quad \quad \frac { 16.3 }{ \sin { \quad 69° } } =\frac { c }{ \sin { \quad 14° } } \\ \therefore \quad \quad \quad c\quad =\frac { 16.3\quad \sin { \quad 14° } }{ \sin { \quad 69° } } \approx 4.2cm\quad \quad

Thus the two sets of solutions are:

B 1 ^ = 111 ° , C 1 ^ = 14 ° , c 1 = 4.22 a n d B 2 ^ = 69 ° , C 2 ^ = 56 ° , c 2 = 14.47 \hat { B_{ 1 } } =111°,\quad \hat { C_{ 1 } } =14°,\quad { c_{ 1 } }=4.22\\ and\\ \hat { B_{ 2 } } =69°,\quad \hat { C_{ 2 } } =56°,\quad { c_{ { 2 } } }=14.47

STEP 2: ADDING THE SUM OF THE ANGLES TO THE SUM OF THE SIDES OF A B C \triangle ABC : Therefore,

A + B 1 + B 2 + C 1 + C 2 + a 1 + a 2 + b + c 1 + c 2 = 55 + 111 + 69 + 14 + 56 + 14.3 + 14.3 + 16.3 + 4.2 + 14.4 = 368.6 \quad A+B_{ 1 }+B_{ 2 }+C_{ 1 }+C_{ 2 }+a_{ 1 }+a_{ 2 }+b+c_{ 1 }+c_{ 2 }\\ =55+111+69+14+56+14.3+14.3+16.3+4.2+14.4\\ =\boxed { 368.6 }

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...