Using Vieta's Formula? (2)

Algebra Level 5

2017 x 3 + 2016 x 2 + 2015 x + 2016 = 0 \large 2017x^3+2016x^2+2015x+2016=0

Let α \alpha , β \beta and γ \gamma be the roots of the equation above .

Find the value of :

2017 ( α 3 β 3 γ 3 ) + 2016 ( α 2 β 2 γ 2 ) + 2015 ( α β γ ) α 4 β 3 γ 3 + α 3 β 4 γ 3 + α 3 β 3 γ 4 4 \large \dfrac{2017(\alpha^3-\beta^3-\gamma^3)+2016(\alpha^2-\beta^2-\gamma^2)+2015(\alpha-\beta-\gamma)}{\sqrt[4]{\alpha^4\beta^3\gamma^3+\alpha^3\beta^4\gamma^3+\alpha^3\beta^3\gamma^4}}


The answer is 2017.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Rishabh Jain
Jul 18, 2016

Relevant wiki: Vieta's Formula - Higher Degrees

Since α , β , γ \alpha,\beta,\gamma are roots of the given equation, hence:

2017 α 3 + 2016 α 2 + 2015 α = 2016... ( 1 ) 2017\alpha^{3}+2016\alpha^{2}+2015\alpha=-2016...(1)

2017 β 3 + 2016 β 2 + 2015 β = 2016... ( 2 ) 2017\beta^{3}+2016\beta^{2}+2015\beta=-2016...(2)

2017 γ 3 + 2016 γ 2 + 2015 γ = 2016... ( 3 ) 2017\gamma^{3}+2016\gamma^{2}+2015\gamma=-2016...(3)

LHS of ( 1 ) ( 2 ) ( 3 ) (1)-(2)-(3) gives the numerator while denominator is simply fourth root of ( α β γ ) 3 ( α + β + γ ) (\alpha\beta\gamma)^3(\alpha+\beta+\gamma) , but Vieta's formula give:

α + β + γ = α β γ = 2016 2017 \small{\color{#D61F06}{\alpha+\beta+\gamma=\alpha\beta\gamma=\dfrac{-2016}{2017}}} so that denominator is simply fourth root of ( α β γ ) 4 (\alpha\beta\gamma)^4 which is α β γ |\alpha\beta\gamma| . Therefore answer is:

2016 2016 2017 = 2017 \large \dfrac{\cancel{2016}}{\frac{\cancel{2016}}{2017}}=\boxed{2017}

Typo: 2017 β 3 + 2016 β 2 + 2015 β = 2016 2017\beta^3+2016\beta^2+\color{#3D99F6}{2015}\beta=-2016

Hung Woei Neoh - 4 years, 11 months ago

Log in to reply

Done... :-)

Rishabh Jain - 4 years, 11 months ago
Tommy Li
Jul 18, 2016

{ 2016 α 3 + 2015 α 2 + 2014 α = 2016 2016 β 3 + 2015 β 2 + 2014 β = 2016 2016 γ 3 + 2015 γ 2 + 2014 γ = 2016 \begin{cases} 2016\alpha^{3}+2015\alpha^{2}+2014\alpha=-2016 \\ 2016\beta^{3}+2015\beta^{2}+2014\beta=-2016 \\ 2016\gamma^{3}+2015\gamma^{2}+2014\gamma=-2016 \end{cases}

α + β + γ = 2016 2017 \alpha+\beta+\gamma = -\frac{2016}{2017}

α β γ = ( 1 ) 3 2016 2017 = 2016 2017 \alpha\beta\gamma = (-1)^3\frac{2016}{2017} = -\frac{2016}{2017}

2017 ( α 3 β 3 γ 3 ) + 2016 ( α 2 β 2 γ 2 ) + 2015 ( α β γ ) α 4 β 3 γ 3 + α 3 β 4 γ 3 + α 3 β 3 γ 4 4 \dfrac{2017(\alpha^3-\beta^3-\gamma^3)+2016(\alpha^2-\beta^2-\gamma^2)+2015(\alpha-\beta-\gamma)}{\sqrt[4]{\alpha^4\beta^3\gamma^3+\alpha^3\beta^4\gamma^3+\alpha^3\beta^3\gamma^4}}

= 2016 + 2016 + 2016 ( α β γ ) 3 ( α + β + γ ) 4 = \dfrac{-2016+2016+2016}{\sqrt[4]{(\alpha\beta\gamma)^3(\alpha+\beta+\gamma)}}

= 2016 ( 2016 2017 ) 4 4 = \dfrac{2016}{\sqrt[4]{(\frac{2016}{2017})^4}}

= 2016 2016 2017 = \dfrac{2016}{\frac{2016}{2017}}

= 2017 = 2017

Typo:

2017 α 3 + 2016 α 2 + 2015 α = 2016 2017 β 3 + 2016 β 2 + 2015 β = 2016 2017 γ 3 + 2016 γ 2 + 2015 γ = 2016 \color{#3D99F6}{2017}\alpha^3+\color{#3D99F6}{2016}\alpha^2+\color{#3D99F6}{2015}\alpha=-2016\\ \color{#3D99F6}{2017}\beta^3+\color{#3D99F6}{2016}\beta^2+\color{#3D99F6}{2015}\beta=-2016\\ \color{#3D99F6}{2017}\gamma^3+\color{#3D99F6}{2016}\gamma^2+\color{#3D99F6}{2015}\gamma=-2016

Hung Woei Neoh - 4 years, 11 months ago

It should be one, just because

A Former Brilliant Member - 4 years, 11 months ago

Log in to reply

Why should it be one?

Hung Woei Neoh - 4 years, 11 months ago

Log in to reply

Because that'd be funny @Hung Woei Neoh

A Former Brilliant Member - 4 years, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...