Using Vieta's Formula? (3)

Algebra Level 5

2017 x 3 + 2016 x 2 + 2018 x + 2016 = 0 \large 2017x^3+2016x^2+2018x+2016=0

Let α \alpha , β \beta and γ \gamma be the roots of the equation above.

Find the value of :

2017 ( α 3 β 3 γ 3 ) + 2016 ( α 2 β 2 γ 2 ) + 2018 ( α β γ ) 2 ( α 6 β 7 γ 7 + α 7 β 6 γ 7 + α 7 β 7 γ 6 ) + ( α 8 β 6 γ 6 + α 6 β 8 γ 6 + α 6 β 6 γ 8 ) 8 \large \dfrac{2017(\alpha^3-\beta^3-\gamma^3)+2016(\alpha^2-\beta^2-\gamma^2)+2018(\alpha-\beta-\gamma)}{\sqrt[8]{2(\alpha^{6}\beta^{7}\gamma^{7}+\alpha^{7}\beta^{6}\gamma^{7}+\alpha^{7}\beta^{7}\gamma^{6})+(\alpha^{8}\beta^{6}\gamma^{6}+\alpha^{6}\beta^{8}\gamma^{6}+\alpha^{6}\beta^{6}\gamma^{8})} }


The answer is 2017.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Tommy Li
Jul 18, 2016

{ 2017 α 3 + 2016 α 2 + 2018 α = 2016 2017 β 3 + 2016 β 2 + 2018 β = 2016 2017 γ 3 + 2016 γ 2 + 2018 γ = 2016 \begin{cases} 2017\alpha^{3}+2016\alpha^{2}+2018\alpha=-2016 \\ 2017\beta^{3}+2016\beta^{2}+2018\beta=-2016 \\ 2017\gamma^{3}+2016\gamma^{2}+2018\gamma=-2016 \end{cases}

α + β + γ = 2016 2017 \alpha+\beta+\gamma = -\frac{2016}{2017}

α β γ = ( 1 ) 3 2016 2017 = 2016 2017 \alpha\beta\gamma = (-1)^3\frac{2016}{2017} = -\frac{2016}{2017}

2016 ( α 3 β 3 γ 3 ) + 2017 ( α 2 β 2 γ 2 ) + 2018 ( α β γ ) 2 ( α 6 β 7 γ 7 + α 7 β 6 γ 7 + α 7 β 7 γ 6 ) + ( α 8 β 6 γ 6 + α 6 β 8 γ 6 + α 6 β 6 γ 8 ) 8 \dfrac{2016(\alpha^3-\beta^3-\gamma^3)+2017(\alpha^2-\beta^2-\gamma^2)+2018(\alpha-\beta-\gamma)}{\sqrt[8]{2(\alpha^{6}\beta^{7}\gamma^{7}+\alpha^{7}\beta^{6}\gamma^{7}+\alpha^{7}\beta^{7}\gamma^{6})+(\alpha^{8}\beta^{6}\gamma^{6}+\alpha^{6}\beta^{8}\gamma^{6}+\alpha^{6}\beta^{6}\gamma^{8})}}

= 2016 + 2016 + 2016 ( α β γ ) 6 ( 2 α β + 2 β γ + 2 γ α + α 2 + β 2 + γ 2 ) 8 = \dfrac{-2016+2016+2016}{\sqrt[8]{(\alpha\beta\gamma)^6(2\alpha\beta+2\beta\gamma+2\gamma\alpha+\alpha^2+\beta^2+\gamma^2)}}

= 2016 ( 2016 2017 ) 6 ( α + β + γ ) 2 8 = \dfrac{2016}{\sqrt[8]{(-\frac{2016}{2017})^6(\alpha+\beta+\gamma)^2}}

= 2016 ( 2016 2017 ) 8 8 = \dfrac{2016}{\sqrt[8]{(-\frac{2016}{2017})^8}}

= 2016 2016 2017 = \dfrac{2016}{\frac{2016}{2017}}

= 2017 = 2017

I think you are saying that 2016 α 3 + 2017 α 2 + 2018 α 2016 \alpha^3 + 2017 \alpha^2 + 2018 \alpha is equal to 2016 -2016 , and the same for β \beta and γ \gamma . But the correct equation, as you state above, is 2017 α 3 + 2016 α 2 + 2018 α = 2016. 2017 \alpha^3 + 2016 \alpha^2 + 2018 \alpha = -2016.

Jon Haussmann - 4 years, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...