Uzumaki's impossible equality

Algebra Level 5

If real numbers x 1 , x 2 , x 13 x_1, x_2, \ldots x_{13} satisfy

i = 1 13 x i = 2 i = 1 13 i x i i 2 , \sum_{i=1}^{13} x_{i} = 2 \sum_{i=1}^{13} i \sqrt{x_{i} -i^{2}} ,

what is the value of x 13 x_{13} ?

This problem is posed by Uzumaki N .


The answer is 338.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

7 solutions

Hero P.
Sep 15, 2013

Note that we must have x i i 2 x_i \ge i^2 for all i > 0 i > 0 . Then the AM-GM inequality gives x i 2 = ( x i i 2 ) + i 2 2 ( x i i 2 ) i 2 = i x i i 2 , \frac{x_i}{2} = \frac{(x_i-i^2) + i^2}{2} \ge \sqrt{(x_i-i^2)i^2} = i \sqrt{x_i-i^2}, or equivalently, x i 2 i x i i 2 , x_i \ge 2i \sqrt{x_i - i^2}, with equality occurring if and only if i 2 = x i i 2 i^2 = x_i - i^2 , or x i = 2 i 2 x_i = 2i^2 . Therefore, the LHS sum is always at least as large as the RHS sum, except when x i = 2 i 2 x_i = 2i^2 for each i = 1 , 2 , , 13 i = 1, 2, \ldots, 13 ; therefore, x 13 = 2 ( 13 ) 2 = 338 x_{13} = 2(13)^2 = \boxed{338} .

Moderator note:

Nicely done!

Andrew Edwards
Sep 16, 2013

Make the substitution u i = x i i 2 u_i = \sqrt{x_i -i^2} , equivalently x i = i 2 + u i 2 x_i=i^2 + u_i ^2 . Then the u i u_i 's satisfy u i 2 2 i u i + u i 2 = ( u i i ) 2 = 0 \sum u_i ^2 - 2i u_i + u_i ^2 = \sum (u_i -i)^2 = 0 . It follows that i , u i = i \forall i , u_i =i , hence x 13 = 1 3 2 + 1 3 2 = 338 x_{13} = 13^2 + 13^2 = \boxed{338}

Moderator note:

Nicely done: short and straight to the point!

A little misprint, see correction in the comments.

Minor correction: it's u i 2 2 i u i + i 2 \sum u_i^2 - 2i u_i + i^2 in the second sentence.

C Lim - 7 years, 8 months ago

Log in to reply

Oops. Thanks for pointing that out.

Andrew Edwards - 7 years, 8 months ago

Clever substitution. I'll definitely vote you up.

Nishant Sharma - 6 years, 11 months ago
Nhat Le
Sep 16, 2013

In the solution, will use the inequality 2 a b a 2 + b 2 2ab \leq a^2+b^2 , with the equality sign occurring if and only if a = b a=b .

Now, for a fixed value of i i , we have 2 i x i i 2 i 2 + ( x i i 2 ) = x i 2i\sqrt{x_i-i^2} \leq i^2 + (x_i-i^2) = x_i Thus adding all the terms corresponding to i = 1 i=1 to i = 13 i=13 would give

2 i = 1 13 i x i i 2 i = 1 13 x i 2\sum_{i=1}^{13} i\sqrt{x_i-i^2} \leq \sum_{i=1}^{13}x_i

The equality sign occurs if and only if i = x i i 2 i=\sqrt{x_i-i^2} , for all i i running from 1 1 to 13 13 . This means i 2 = x i i 2 i^2 = x_i-i^2 , or x i = 2 i 2 x_i = 2i^2 for all i i from 1 1 to 13 13 .

Therefore x 13 = 2 ( 1 3 2 ) = 338 x_{13} = 2(13^2) = \fbox{338}

Moderator note:

Nicely done!

D S
Sep 21, 2013

Consider the general form i = 1 n x i = 2 i = 1 n i x i i 2 = 0. \sum_{i=1}^{n}x_i=2\sum_{i=1}^{n}i\sqrt{x_i-i^2}=0. Moving all the terms to the LHS yields i = 1 n ( x i 2 i x i i 2 ) = i = 1 n ( x i i 2 i ) 2 = 0 , \sum_{i=1}^{n}\left(x_i-2i\sqrt{{x_i-i^2}}\right)=\sum_{i=1}^{n}\left(\sqrt{x_i-i^2}-i\right)^2=0, from which we can surmise that x i = 2 i 2 . x_i=2i^2. Thus, we have that x 13 = 2 1 3 2 = 338 , x_{13} = 2 \cdot 13^2 = \boxed{338}, as desired.

x 1 1 2 + 2 x 2 2 2 + 3 x 3 3 2 + . . . + 13 x 13 1 3 2 = 1 2 ( x 1 + x 2 + x 3 . . . + x 13 ) \sqrt{x_{1}-1^{2}}+2\sqrt{x_{2}-2^{2}}+3\sqrt{x_{3}-3^{2}}+...+13\sqrt{x_{13}-13^{2}}=\frac{1}{2}(x_{1}+x_{2}+x_{3}...+x_{13}) 2 x 1 1 2 + 4 x 2 2 2 + . . . + 2 n x 13 1 3 2 = x 1 + x 2 + . . . + x 13 x 1 + x 2 + . . . + x 13 2 x 1 1 2 4 x 2 2 2 . . . 26 x 13 1 3 2 = 0 \Rightarrow 2\sqrt{x_{1}-1^{2}}+4\sqrt{x_{2}-2^{2}}+... +2n\sqrt{x_{13}-13^{2}}=x_{1}+x_{2}+...+x_{13}\\ \Rightarrow x_{1}+x_{2}+...+x_{13}-2\sqrt{x_{1}-1^{2}}-4\sqrt{x_{2}-2^{2}}-...-26\sqrt{x_{13}-13^{2}}=0 ( x 1 1 1 ) 2 + ( x 2 2 2 2 ) 2 + . . . + ( x 13 1 3 2 13 ) 2 = 0 \Rightarrow \left ( \sqrt{ x_{1}-1}-1\right )^{2}+\left ( \sqrt{ x_{2}-2^{2}}-2\right )^{2}+...+\left ( \sqrt{ x_{13}-13^{2}}-13\right )^{2}=0 \ we have: x 1 1 1 = 0 x 1 1 = 1 x 1 1 = 1 x 1 = 2 x 2 2 2 2 = 0 x 2 2 2 = 2 x 2 2 2 = 4 x 1 = 2. 2 2 x 13 1 3 2 13 = 0 x 13 1 3 2 = 13 x 13 1 3 2 = 1 3 2 x 13 = 2.1 3 2 = 338 \sqrt{x_{1}-1}-1=0 \Rightarrow \sqrt{x_{1}-1}=1 \Rightarrow x_{1}-1=1 \Rightarrow x_{1}=2\\ \sqrt{x_{2}-2^{2}}-2=0 \Rightarrow \sqrt{x_{2}-2^{2}}=2 \Rightarrow x_{2}-2^{2}=4 \Rightarrow x_{1}=2.2^{2}\\ \vdots\\ \sqrt{x_{13}-13^{2}}-13=0 \Rightarrow \sqrt{x_{13}-13^{2}}=13 \Rightarrow x_{13}-13^{2}=13^{2} \Rightarrow x_{13}=2.13^{2}=338

Michael Mendrin
Aug 2, 2014

The quick and dirty way of getting at the answer to this one is to assume that if any sequence x 1 , x 2 , . . . x 13 { x }_{ 1 }, { x }_{ 2 },...{ x }_{ 13 } to make this equality true, then
x 13 { x }_{ 13 } must be the answer. So, let x i = 2 i 2 { x }_{ i }=2{ i }^{ 2 } . Then this equality is obviously true. Thus, x i = 2 ( 13 ) 2 = 338 { x }_{ i }=2{ (13) }^{ 2 }=338 .

Arnab Animesh Das
Sep 21, 2013

Since, the 13 13 real numbers are independent of each other, and seperable from each other in terms of the corresponding 13 13 real nos.. Therefore, we can seperate out the entities corresponding to each of the 13 13 real nos. Since, we need to find x 13 x_{13} , therefore, for the given expression, the expression corresponding only to x 13 x_{13} and independent to other terms, can be written as x 13 = 2 × 13 × x 13 1 3 2 x_{13}=2\times13\times\sqrt{x_{13}-13^2} which can be further simplified into, ( x 13 338 ) 2 = 0 \Rightarrow(x_{13}-338)^2=0 Thus, giving the required values of x 13 x_{13} as { 338 , 338 } \{338,338\} . Hence, the required value of x 13 = 338 \text{Hence, the required value of }x_{13}=\fbox{338}

What you claim makes no sense actually. You simply mean i = 0 n x i = i = 0 n f ( x i ) \sum \limits_{i=0}^{n} x_i = \sum \limits_{i=0}^{n} f(x_i) implies x i = f ( x i ) x_i= f(x_i) for all i i . That's obviously not true.

As an explicit counterexample, if n n is even, take f ( x i ) = x i + ( 1 ) i f(x_i)= x_i + (-1)^i for all i i , and if n n is odd, take f ( x 1 ) = x 1 f(x_1)= x_1 and f ( x i ) = x i + ( 1 ) i f(x_i)= x_i +(-1)^i for all i N > 1 i \in \mathbb{N}_{>1} .

Sreejato Bhattacharya - 7 years, 8 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...