Valentine Day Problem 2.

Geometry Level 3

In the heart curve x 2 + ( 5 y 4 x ) 2 = 1 x^2 + \left(\dfrac{5y}{4} - \sqrt{|x|}\right)^2 = 1 above, A B \overline{\rm AB} goes from the positive y y intercept to the positive x x intercept and A C \overline{\rm AC} goes from the positive y y intercept to the negative x x intercept and points A , B , C , D A,B,C,D encloses the region R R .

If the area A R A_{R} of the region R R of the heart curve x 2 + ( 5 y 4 x ) 2 = 1 x^2 + \left(\dfrac{5y}{4} - \sqrt{|x|}\right)^2 = 1 can be expressed as A R = a 2 b ( arcsin ( ϕ 1 ) 1 c ( ϕ 1 ) c / a + ( ϕ 1 ) ) A_{R} = \dfrac{a^2}{b}\left(\arcsin(\phi - 1) - \dfrac{1}{c}(\phi - 1)^{c/a} + (\phi - 1)\right) , where a a , b b and c c are coprime positive integers and ϕ \phi is the golden ratio, find a + b + c a + b + c .

Note: I initially posted this problem a week prior to Valentines day, so I'm reposting now.


The answer is 10.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rocco Dalto
Feb 15, 2021

For the x x intercept of y 1 = 4 5 ( x 1 x 2 ) y_{1} = \dfrac{4}{5} (\sqrt{x} - \sqrt{1 - x^2}) we obtain:

x 2 + x 1 = 0 x = 1 ± 5 2 x^2 + x - 1 = 0 \implies x = \dfrac{-1 \pm \sqrt{5}}{2} , since x = 1 + 5 2 = ϕ x = -\dfrac{1 + \sqrt{5}}{2} = -\phi results in a complex valued square root x = 5 1 2 \implies x = \dfrac{\sqrt{5} - 1}{2} is the x intercept of y 1 = 4 5 ( x 1 x 2 ) y_{1} = \dfrac{4}{5} (\sqrt{x} - \sqrt{1 - x^2}) .

The equation of the line passing thru A : ( 0 , 4 5 ) A: (0,\dfrac{4}{5}) and B : ( 5 1 2 , 0 ) B: (\dfrac{\sqrt{5} - 1}{2},0) is:

y = 4 5 ( 2 x 5 1 + 1 ) y = \dfrac{4}{5} (\dfrac{-2x}{\sqrt{5} - 1} + 1) \implies

A R 1 = 4 5 0 5 1 2 A_{R_{1}} = \dfrac{4}{5} \int_{0}^{\frac{\sqrt{5} - 1}{2}} ( 1 2 x 5 1 + 1 x 2 x ) d x (1 - \dfrac{2x}{\sqrt{5} - 1} + \sqrt{1 - x^2} - \sqrt{x}) dx

For 1 x 2 d x \int \sqrt{1 - x^2} dx

Let x = sin ( θ ) d x = cos ( θ ) 1 x 2 d x = cos 2 ( θ ) d θ = 1 2 ( θ + sin ( θ ) cos ( θ ) ) x = \sin(\theta) \implies dx = \cos(\theta) \implies \int \sqrt{1 - x^2} dx = \int \cos^2(\theta) d\theta = \dfrac{1}{2}(\theta + \sin(\theta)\cos(\theta)) .

Let β = 5 1 2 \beta = \dfrac{\sqrt{5} - 1}{2}

0 β 1 x 2 d x = 1 2 arcsin ( β ) + 1 2 β 3 2 \implies \int_{0}^{\beta} \sqrt{1 - x^2} dx = \dfrac{1}{2}\arcsin(\beta) + \dfrac{1}{2} \beta^{\frac{3}{2}} \implies A R 1 = 4 5 ( 1 2 arcsin ( β ) + 1 2 β 3 2 + ( 2 3 x 3 2 + x x 2 5 1 ) 0 β = A_{R_{1}} = \dfrac{4}{5} (\dfrac{1}{2}\arcsin(\beta) + \dfrac{1}{2} \beta^{\frac{3}{2}} + (-\dfrac{2}{3} x^{\frac{3}{2}} + x - \dfrac{x^2}{\sqrt{5} - 1})|_{0}^{\beta} = 2 5 ( arcsin ( β ) 1 3 β 3 2 + β ) \dfrac{2}{5}(\arcsin(\beta) - \dfrac{1}{3}\beta^{\frac{3}{2}} + \beta)

β = 5 1 2 = 1 + 5 2 1 = ϕ 1 A R 1 = 2 5 ( arcsin ( ϕ 1 ) 1 3 ( ϕ 1 ) 3 2 + ϕ 1 ) \beta = \dfrac{\sqrt{5} - 1}{2} = \dfrac{1 + \sqrt{5}}{2} - 1 = \phi - 1 \implies A_{R_{1}} = \dfrac{2}{5}(\arcsin(\phi - 1) - \dfrac{1}{3}(\phi - 1)^{\frac{3}{2}} + \phi - 1) \implies A R = 2 A R 1 = 4 5 ( arcsin ( ϕ 1 ) 1 3 ( ϕ 1 ) 3 / 2 + ϕ 1 ) = A_{R} = 2A_{R_{1}} = \dfrac{4}{5}(\arcsin(\phi - 1) - \dfrac{1}{3}(\phi - 1)^{3/2} + \phi - 1) = a 2 b ( arcsin ( ϕ 1 ) 1 c ( ϕ 1 ) c / a + ( ϕ 1 ) ) a + b + c = 10 . \dfrac{a^2}{b}(\arcsin(\phi - 1) - \dfrac{1}{c}(\phi - 1)^{c/a} + (\phi - 1)) \implies a + b + c = \boxed{10}.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...