Valentine won't show it merci

Algebra Level 5

x + y + z + 20 x + z + 20 y + 2 x+y+z+\frac{20}{\sqrt{x+z}}+\frac{20}{\sqrt{y+2}} Given that x , y x,y and z z are positive reals satisfying x 2 + y 2 + z 2 + 2 x y 3 x 3 y 3 z = 0 x^2+y^2+z^2+2xy-3x-3y-3z=0 , find the minimum of the expression above.


The answer is 26.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Ariel Gershon
Feb 15, 2016

By completing the squares, we can rewrite the initial condition as ( x + y 3 2 ) 2 + ( z 3 2 ) 2 = 9 2 \left(x + y - \dfrac{3}{2}\right)^2 + \left(z - \dfrac{3}{2}\right)^2 = \dfrac{9}{2} .

Let m = x + y + z m = x+y+z . I will now prove a lemma, namely that m 6 m \le 6 .

Let's use Jensen's Inequality on the function y = x 2 y = x^2 : 9 2 = ( x + y 3 2 ) 2 + ( z 3 2 ) 2 \dfrac{9}{2} = \left(x + y - \dfrac{3}{2}\right)^2 + \left(z - \dfrac{3}{2}\right)^2 9 2 2 ( 1 2 ( x + y 3 2 + z 3 2 ) ) 2 = ( x + y + z 3 ) 2 2 \dfrac{9}{2} \ge 2\left(\dfrac{1}{2}\left(x + y - \dfrac{3}{2} + z - \dfrac{3}{2}\right)\right)^2 = \dfrac{(x+y+z-3)^2}{2} x + y + z 3 3 x+y+z-3 \le 3 x + y + z 6. x+y+z \le 6. \boxed{}

Now let's use Jensen's Inequality on the function y = 20 x y = \dfrac{20}{\sqrt{x}} : x + y + z + 20 x + z + 20 y + 2 x + y + z + 2 20 x + y + z + 2 2 x + y + z + \dfrac{20}{\sqrt{x+z}} + \dfrac{20}{\sqrt{y+2}} \ge x + y + z + 2*\dfrac{20}{\sqrt{\dfrac{x+y+z+2}{2}}} = x + y + z + 40 2 x + y + z + 2 = m + 40 2 m + 2 = x+y+z + \dfrac{40\sqrt{2}}{\sqrt{x+y+z+2}} = m + \dfrac{40\sqrt{2}}{\sqrt{m + 2}}

We now need one more little lemma: that the function f ( m ) = m + 40 2 m + 2 f(m) = m + \dfrac{40\sqrt{2}}{\sqrt{m + 2}} is decreasing for 0 m 6 0 \le m \le 6 : f ( m ) = 1 20 2 ( m + 2 ) 3 / 2 1 20 2 ( 6 + 2 ) 3 / 2 = 1 4 < 0 f'(m) = 1 - \dfrac{20\sqrt{2}}{(m+2)^{3/2}} \le 1 - \dfrac{20\sqrt{2}}{(6+2)^{3/2}} = -\dfrac{1}{4} < 0

Therefore, the minimum of f ( m ) f(m) for 0 m 6 0 \le m \le 6 occurs at m = 6 m = 6 , and it is f ( 6 ) = 6 + 40 2 6 + 2 = 26 f(6) = 6 + \dfrac{40\sqrt{2}}{\sqrt{6 + 2}} = 26

Therefore, x + y + z + 20 x + z + 20 y + 2 26 x + y + z + \dfrac{20}{\sqrt{x+z}} + \dfrac{20}{\sqrt{y+2}} \ge 26 . This value is achieved when x = 1 , y = 2 , z = 3 x = 1, y = 2, z = 3 . Hence the minimum value is 26 \boxed{26} .

great solution

Sarith Imaduwage - 5 years, 3 months ago
Son Nguyen
Feb 21, 2016

Because student in grade 10 in the competition only-can using AM-GM and C-S(The other must prove then can use).I post a solution using only AM-GM.

From the conditional we have: 3 ( x + y + z ) = ( x + y ) 2 + z 2 1 2 ( x + y + z ) 2 3(x+y+z)=(x+y)^2+z^2\geq \frac{1}{2}(x+y+z)^2 x + y + z 6 \Rightarrow x+y+z\leq 6 Rewrite the polynomial: [ ( x + z ) + 8 x + z + 8 x + z ] + [ ( y + 2 ) + 8 y + 2 + 8 y + 2 ] + 4 [ 1 x + y + 1 y + 2 ] 2 [(x+z)+\frac{8}{\sqrt{x+z}}+\frac{8}{\sqrt{x+z}}]+[(y+2)+\frac{8}{\sqrt{y+2}}+\frac{8}{\sqrt{y+2}}]+4[\frac{1}{\sqrt{x+y}}+\frac{1}{\sqrt{y+2}}]-2 Call the expression above is P.By applying AM-GM we have: P 3 ( x + z ) 64 x + z 3 + 3 ( y + 2 ) 64 y + 2 3 + 8 ( x + z ) ( y + 2 ) 4 2 P\geq 3\sqrt[3]{(x+z)\frac{64}{x+z}}+3\sqrt[3]{(y+2)\frac{64}{y+2}}+\frac{8}{\sqrt[4]{(x+z)(y+2)}}-2 = 22 + 8 2 x + y + z + 2 26 =22+\frac{8\sqrt{2}}{\sqrt{x+y+z+2}}\geq 26 So m a x = 26 max=26 .The equality holds when x = 1 , y = 2 , z = 3 x=1,y=2,z=3

@Ariel Gershon and @ASWIN T.S. both of you have good solution.Thanks.

Thanks! You have a great solution as well. I have one question though:

( x + y ) 2 + z 2 1 2 ( x + y + z ) 2 (x+y)^2 + z^2 \ge \dfrac{1}{2}(x+y+z)^2

How is this using the AM-GM inequality?

Ariel Gershon - 5 years, 3 months ago

Log in to reply

that's power mean inequality

P C - 5 years, 3 months ago
Aswin T.S.
Feb 17, 2016

since the answer is not in decimal

x + z is a square number

y+ 2 is a square number

to get a minimum value for the expression, x+z and y+2 should be small square number

therefore y=2

and x=1 and z=3

therefore value of expression = 1 +2+3 +20/2 +20/2

                                           = 1+2+3+20

                                           = 26

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...