Valley and Mountain

Calculus Level 3

On the Cartesian plane, what is the distance between the global maximum and global minimum of the following function?

f ( x ) = tan ( π x x 2 + 4 ) f(x) = \tan \left ( \dfrac{\pi x}{x^2+4} \right )

5 \sqrt{5} 5 2 5 \sqrt{2} 2 \sqrt{2} 2 5 2 \sqrt{5}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Jan 22, 2017

f ( x ) = tan ( π x x 2 + 4 ) d d x f ( x ) = π ( x 2 + 4 ) 2 π x 2 ( x 2 + 4 ) 2 sec 2 ( π x x 2 + 4 ) f ( x ) = π ( 4 x 2 ) ( x 2 + 4 ) 2 sec 2 ( π x x 2 + 4 ) \begin{aligned} f(x) & = \tan \left(\frac {\pi x}{x^2+4} \right) \\ \implies \frac d{dx} f(x) & = \frac {\pi \left(x^2+4\right) - 2 \pi x^2}{\left(x^2+4\right)^2} \cdot \sec^2 \left(\frac {\pi x}{x^2+4} \right) \\ f'(x) & = \frac {\pi \left(4 - x^2\right)}{\left(x^2+4\right)^2} \cdot \sec^2 \left(\frac {\pi x}{x^2+4} \right) \end{aligned}

Making f ( x ) = 0 f'(x) = 0 to find the maximum and minimum, we note that since sec 2 ( π x x 2 + 4 ) 0 \sec^2 \left(\dfrac {\pi x}{x^2+4} \right) \ne 0 4 x 2 = 0 \implies 4 - x^2 = 0 , x = ± 2 \implies x = \pm 2 . Let us check the values of f ( 2 ) f''(2) and f ( 2 ) f''(-2) to determine which is maximum and minimum.

f ( x ) = π ( 4 x 2 ) ( x 2 + 4 ) 2 sec 2 ( π x x 2 + 4 ) = π ( 4 x 2 ) ( x 2 + 4 ) 2 ( 1 + tan 2 ( π x x 2 + 4 ) ) = π ( 4 x 2 ) ( x 2 + 4 ) 2 ( 1 + f 2 ( x ) ) f ( x ) = π ( 2 x ( x 2 + 4 ) ( 4 x 2 ) ( 2 x ) ) ( x 2 + 4 ) 3 ( 1 + f 2 ( x ) ) + π ( 4 x 2 ) ( x 2 + 4 ) 2 ( 1 + 2 f ( x ) f ( x ) ) = 8 π x ( x 2 + 4 ) 3 ( 1 + f 2 ( x ) ) + π ( 4 x 2 ) ( x 2 + 4 ) 2 ( 1 + 2 f ( x ) f ( x ) ) \begin{aligned} f'(x) & = \frac {\pi \left(4 - x^2\right)}{\left(x^2+4\right)^2} \cdot \sec^2 \left(\frac {\pi x}{x^2+4} \right) \\ & = \frac {\pi \left(4 - x^2\right)}{\left(x^2+4\right)^2} \left(1 + \tan^2 \left(\frac {\pi x}{x^2+4} \right) \right) \\ & = \frac {\pi \left(4 - x^2\right)}{\left(x^2+4\right)^2} \left(1 + f^2(x) \right) \\ f''(x) & = \frac {\pi \left(- 2x\left(x^2+4\right)-\left(4 - x^2\right)(2x)\right)}{\left(x^2+4\right)^3} \left(1 + f^2(x) \right) + \frac {\pi \left(4 - x^2\right)}{\left(x^2+4\right)^2} \left(1 + 2f(x)f'(x) \right) \\ & = \frac {-8\pi x}{\left(x^2+4\right)^3} \left(1 + f^2(x) \right) + \frac {\pi \left(4 - x^2\right)}{\left(x^2+4\right)^2} \left(1 + 2f(x)f'(x) \right) \end{aligned}

{ f ( 2 ) < 0 f ( 2 ) = tan ( 2 π 2 2 + 4 ) = 1 Maximum f ( 2 ) > 0 f ( 2 ) = tan ( 2 π 2 2 + 4 ) = 1 Minimum \implies \begin{cases} f''(2) < 0 & \implies f(2) = \tan \left(\dfrac {2 \pi }{2^2+4} \right) = 1 & \text{Maximum} \\ f''(-2) > 0 & \implies f(-2) = \tan \left(\dfrac {-2 \pi }{2^2+4} \right) = -1 & \text{Minimum} \end{cases}

The length of the line joining ( 2 , 1 ) (2,1) and ( 2 , 1 ) (-2,-1) , L = ( 2 + 2 ) 2 + ( 1 + 1 ) 2 = 20 = 2 5 L = \sqrt{(2+2)^2+(1+1)^2} = \sqrt{20} = \boxed{2\sqrt 5} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...