Value matters.

Algebra Level 2

If x y = 1 3 \dfrac{x}{y} = \dfrac{1}{3} , then what is x 2 + y 2 x 2 y 2 \dfrac{x^2+y^2}{x^2-y^2} ?

5 3 \dfrac{5}{3} 1 2 \dfrac{1}{2} 10 9 -\dfrac{10}{9} 5 4 -\dfrac{5}{4} 5 3 -\dfrac{5}{3} 5 5 \dfrac{5}{5} 2 4 \dfrac{2}{4}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Munem Shahriar
Aug 19, 2017

x y = 1 3 \dfrac{x}{y} = \dfrac{1}{3}

Cross multiply,

3 x = y . \Rightarrow 3x = y.

Square both sides,

9 x 2 = y 2 \Rightarrow 9x^2 = y^2

Therefore, x 2 + y 2 x 2 y 2 = x 2 + 9 x 2 x 2 9 x 2 = 10 x 2 8 x 2 10 8 = 5 4 \Rightarrow \dfrac{x^2 + y^2}{x^2 - y^2} = \dfrac{x^2 + 9x^2}{x^2- 9x^2} = \dfrac{10x^2}{-8x^2} \implies -\dfrac{10}{8} = \boxed{-\dfrac{5}{4}}

Chew-Seong Cheong
Aug 20, 2017

X = x 2 + y 2 x 2 y 2 Divide up and down with x y = x y + y x x y y x = 1 3 + 3 1 3 3 = 10 8 = 5 4 \begin{aligned} X & = \frac {x^2+y^2}{x^2-y^2} & \small \color{#3D99F6} \text{Divide up and down with }xy \\ & = \frac {\frac xy+\frac yx}{\frac xy-\frac yx} = \frac {\frac 13+3}{\frac 13-3} \\ & = \frac {10}{-8} = \boxed{ - \dfrac 54} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...