Value matters#2

Algebra Level 2

If x 2 + 1 x 2 = 3 , x^2 + \dfrac{1}{x^2} = 3, then what is the positive value of x 6 + 1 x 3 ? \dfrac{x^6 + 1}{x^3} ?

2 5 2\sqrt{5} 5 5 3 5\sqrt{3} 3 6 3\sqrt{6}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Aug 20, 2017

( x + 1 x ) 2 = x 2 + 2 + 1 x 2 = 2 + 3 = 5 x + 1 x = ± 5 \begin{aligned} \left(x+\frac 1x\right)^2 & = x^2 + 2 + \frac 1{x^2} = 2+3 = 5 \\ \implies x + \frac 1x & = \pm \sqrt 5 \end{aligned}

Now, we have:

( x + 1 x ) 3 = x 3 + 3 x + 3 x + 1 x 3 x 3 + 1 x 3 = ( x + 1 x ) 3 3 ( x + 1 x ) Using the positive value x + 1 x = 5 x 6 + 1 x 3 = ( 5 ) 3 3 ( 5 ) = 2 5 \begin{aligned} \left(x+\frac 1x\right)^3 & = x^3 + 3x + \frac 3x + \frac 1{x^3} \\ x^3 + \frac 1{x^3} & = \left({\color{#3D99F6} x+\frac 1x} \right)^3 - 3 \left({\color{#3D99F6} x+\frac 1x} \right) & \small \color{#3D99F6} \text{Using the positive value }x+\frac 1x = \sqrt 5 \\ \implies \frac {x^6+1}{x^3} & = \left({\color{#3D99F6} \sqrt 5} \right)^3 - 3 \left({\color{#3D99F6} \sqrt 5} \right) = \boxed{2\sqrt{5}} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...