If g ( x ) = ( 4 cos 4 x − 2 cos ( 2 x ) − 2 1 cos ( 4 x ) − x 7 ) 7 1 , then find the value of g ( g ( 1 0 0 ) ) .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
One another way by using complex numbers : cos ( n x ) = 2 e i n x + e − i n x ( L e t e i x = y ) 2 cos ( n x ) = ( y n + y n 1 ) . . . ( 1 ) 4 cos 4 x = 4 1 ( y + y 1 ) 4 = 4 1 ( ( y 4 + y 4 1 ) + 4 ( y 2 + y 2 1 ) + 6 ) 4 cos 4 x = 4 1 ( 2 cos ( 4 x ) + 8 cos ( 2 x ) + 6 ) 4 cos 4 x − 2 cos ( 2 x ) − 2 1 cos ( 4 x ) = 2 3 . . . . ( 2 ) g ( x ) = ( 1 . 5 − x ) 7 1
Log in to reply
Yeah!! I learn't this technique from a comment in your note Complex number techniques ... :)
Simple standard approach.
L e t f ( x ) = 4 . c o s 4 x − 2 . c o s 2 x − 2 1 . c o s 4 x . f ( x ) < 7 S o g ( 1 0 0 ) i t i s a s g o o d a s = ( − 1 0 0 7 ) 7 1 = − 1 0 0 . ∴ g ( g ( 1 0 0 ) ) = g ( { ( − ( − 1 0 0 ) ) 7 } 7 1 ) 1 0 0
Problem Loading...
Note Loading...
Set Loading...
Consider A = 4 . c o s 4 x − 2 . c o s 2 x − 2 1 . c o s 4 x
d x d ( 4 . c o s 4 x − 2 . c o s 2 x − 2 1 . c o s 4 x ) = − 1 6 cos 3 x sin x + 4 sin 2 x + 2 sin 4 x = − 1 6 cos 3 x sin x + 4 sin 2 x + 4 sin 2 x cos 2 x = − 1 6 cos 3 x sin x + 8 cos 2 x sin 2 x = 0
This means that A is a constant. It's easy to see that A = 3 / 2 (just put x = 0 ).
⇒ g ( x ) = ( 1 . 5 − x 7 ) 1 / 7
⇒ g ( g ( x ) ) = x
⇒ g ( g ( 1 0 0 ) ) = 1 0 0