Value of Determinant

Algebra Level 3

1 / 1 1 / 3 1 / 15 1 / 3 1 / 15 1 / 35 1 / 5 1 / 35 1 / 63 \begin{vmatrix}{1/1} && {1/3} && {1/15} \\ {1/3} && {1/15} && {1/35} \\ {1/5} && {1/35} && {1/63}\end{vmatrix}

If the value of the determinant above equals A B \dfrac AB , where A A and B B are coprime positive integers, find A + B A+B .


The answer is 496189.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

D e t = [ 1 ( 1 15 ) ( 1 63 ) + ( 1 3 ) ( 1 35 ) ( 1 5 ) + 1 15 ( 1 3 ) ( 1 35 ) ] [ 1 5 ( 1 15 ) ( 1 15 ) + 1 35 ( 1 35 ) ( 1 ) + 1 63 ( 1 3 ) ( 1 3 ) ] Det=\left[1\left(\dfrac{1}{15}\right)\left(\dfrac{1}{63}\right)+\left(\dfrac{1}{3}\right)\left(\dfrac{1}{35}\right)\left(\dfrac{1}{5}\right)+\dfrac{1}{15}\left(\dfrac{1}{3}\right)\left(\dfrac{1}{35}\right)\right]-\left[\dfrac{1}{5}\left(\dfrac{1}{15}\right)\left(\dfrac{1}{15}\right)+\dfrac{1}{35}\left(\dfrac{1}{35}\right)(1)+\dfrac{1}{63}\left(\dfrac{1}{3}\right)\left(\dfrac{1}{3}\right)\right]

= ( 1 945 + 1 525 + 1 1575 ) ( 1 1125 + 1 1225 + 1 567 ) =\left(\dfrac{1}{945}+\dfrac{1}{525}+\dfrac{1}{1575}\right)-\left(\dfrac{1}{1125}+\dfrac{1}{1225}+\dfrac{1}{567}\right)

= 17 4725 1721 496125 =\dfrac{17}{4725}-\dfrac{1721}{496125}

= 64 496125 =\dfrac{64}{496125}

The desired answer is 64 + 496125 = 64+496125= 496189 \boxed{496189}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...