Value of Polinomials (2)

Algebra Level 3

If x 2 16 x = 12 x^2-16\sqrt{x}=12 , what is x 2 x = ? x-2\sqrt{x}=?


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

x 2 16 x = 12 (Given) Adding 4 x + 4 to both sides, x 2 + 4 x + 4 = 4 x + 16 x + 16 ( x + 2 ) 2 = ( 2 x + 4 ) 2 ( x + 2 ) 2 ( 2 x + 4 ) 2 = 0 ( x + 2 + 2 x + 4 ) ( x + 2 2 x 4 ) = 0 x = 2 x + 2 or x = 2 x 6 However, Setting x = 2 x 6 ( x 1 ) 2 = 5 The above equation has no real solution. ( x 2 x ) = 2 \begin{aligned} x^2-16\sqrt{x}&=12 \hspace{4mm}\small\color{#3D99F6}\text{(Given)}\\ \text{Adding } 4x+4& \text{ to both sides,}\\ x^2+4x+4&=4x+16\sqrt{x}+16\\ \implies (x+2)^2 &=(2\sqrt{x}+4)^2\\ \implies(x+2)^2-(2\sqrt{x}+4)^2&=0\\ (x+2+2\sqrt{x}+4)(x+2-2\sqrt{x}-4)&=0\\ \implies x&=2\sqrt{x}+2 \text{ or } x=-2\sqrt{x}-6\\\\ \text{However,}\\ \text{Setting } x&=-2\sqrt{x}-6 \\ \implies (\sqrt{x}-1)^2&=-5\\ \text{The above equation has} &\text{ no real solution.}\\\\ \implies (x-2\sqrt{x})&=\color{#EC7300}\boxed{\color{#333333}2}\end{aligned}

Answer is given in title itself!

Mr. India - 2 years, 2 months ago
Jordan Cahn
Apr 2, 2019

Let y = x y=\sqrt{x} . Then we have y 4 16 y = 12 y 4 16 y 12 = 0 ( y 2 2 y 2 ) ( y 2 + 2 y + 6 ) = 0 Only y 2 2 y 2 has real roots y 2 2 y 2 = 0 y 2 2 y = 2 \begin{aligned} y^4 - 16 y &= 12 \\ y^4 - 16y -12 &= 0 \\ (y^2 - 2y - 2)(y^2 + 2y + 6) &= 0 && \color{#3D99F6}\text{Only }y^2-2y-2\text{ has real roots} \\ y^2 - 2y - 2 &= 0 \\ y^2 - 2y &= 2 \end{aligned} We could solve for y y , but note that x 2 x = y 2 2 y = 2 x-2\sqrt{x} = y^2 - 2y = \boxed{2}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...