Value of the Expression?

Calculus Level 3

What is the value of the expression:

2 2 × 2 + 2 2 × 2 + 2 + 2 2 × 2 + 2 + 2 + 2 2 × = ? \frac{\sqrt{2}}{2}\times\frac{\sqrt{2+\sqrt{2}}}{2}\times\frac{\sqrt{2+\sqrt{2+\sqrt2}}}{2}\times\frac{\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2}}}}}{2}\times\dots = ?

1 π 2 \frac{1}{\pi^2} 2 π \frac{2}{\pi} 1 2 \frac{1}{2} 1 4 \frac{1}{4} 2 e \frac{2}{e}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Jun 26, 2018

Consider the double-angle cosine identity below:

cos θ = 2 cos 2 θ 2 1 cos θ 2 = 1 + cos θ 2 For θ = π 4 cos π 4 = 2 2 cos π 8 = 2 + 2 2 Similarly cos π 16 = 2 + 2 + 2 2 and so on... \begin{aligned} \cos \theta & = 2\cos^2 \frac \theta 2 - 1 \\ \implies \cos \frac \theta 2 & = \sqrt{\frac {1+\cos \theta}2} & \small \color{#3D99F6} \text{For }\theta = \frac \pi 4 \implies \cos \frac \pi 4 = \frac {\sqrt 2}2 \\ \cos \frac \pi 8 & = \frac {\sqrt{2+\sqrt 2}}2 & \small \color{#3D99F6} \text{Similarly } \\ \cos \frac \pi{16} & = \frac {\sqrt{2+\sqrt{2+\sqrt 2}}}2 & \small \color{#3D99F6} \text{and so on...} \end{aligned}

This means that the product given is as follows:

P = cos π 4 × cos π 8 × cos π 16 × = lim n k = 2 n cos π 2 k = lim n sin π 2 n cos π 2 n sin π 2 n k = 2 n 1 cos π 2 k = lim n sin π 2 n 1 2 sin π 2 n k = 2 n 1 cos π 2 k Similarly = lim n sin π 2 n 2 2 2 sin π 2 n k = 2 n 2 cos π 2 k and so on... = lim n sin π 2 2 n 1 sin π 2 n = lim n 1 2 n 1 sin π 2 n = lim n ( π 2 × sin π 2 n π 2 n ) 1 Note that lim x 0 sin x x = 1 = 2 π \begin{aligned} P & = \cos \frac \pi 4 \times \cos \frac \pi 8 \times \cos \frac \pi {16} \times \cdots \\ & = \lim_{n \to \infty} \prod_{k=2}^{\color{#3D99F6}n} \cos \frac \pi{2^k} \\ & = \lim_{n \to \infty} \frac {\sin \frac \pi{2^n}\cos \frac \pi{2^n}}{\sin \frac \pi{2^n}} \prod_{k=2}^{\color{#D61F06}n-1} \cos \frac \pi{2^k} \\ & = \lim_{n \to \infty} \frac {\sin \frac \pi{2^{n-1}}}{2 \sin \frac \pi{2^n}} \prod_{k=2}^{n-1} \cos \frac \pi{2^k} & \small \color{#3D99F6} \text{Similarly } \\ & = \lim_{n \to \infty} \frac {\sin \frac \pi{2^{n-2}}}{2^2 \sin \frac \pi{2^n}} \prod_{k=2}^{n-2} \cos \frac \pi{2^k} & \small \color{#3D99F6} \text{and so on...} \\ & = \lim_{n \to \infty} \frac {\sin \frac \pi 2}{2^{n-1} \sin \frac \pi{2^n}} \\ & = \lim_{n \to \infty} \frac 1{2^{n-1} \sin \frac \pi{2^n}} \\ & = \lim_{n \to \infty} \left(\frac \pi 2 \times \frac {\sin \frac \pi{2^n}}{\frac \pi{2^n}} \right)^{-1} & \small \color{#3D99F6} \text{Note that }\lim_{x \to 0} \frac {\sin x}x = 1 \\ & = \boxed{\dfrac 2\pi} \end{aligned}

Thank you, nice solution.

Hana Wehbi - 2 years, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...