x 3 + y 3 + 1 5 x y − 1 2 5
What is the value of the two-variable expression above, if x + y = 5 ?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
The expression factors: x 3 + y 3 + 1 5 x y − 1 2 5 = ( x + y − 5 ) ( x 2 − x y + y 2 + 5 x + 5 y + 2 5 ) , so the answer is 0 .
x^3 +y^3 +15xy-125
As (x+y)(x^2-2xy+y^2)=x^3 +y^3
Therefore we can simplify the expression as: (x+y)(x^2-2xy+y^2)+15xy-125
5(x^2-xy+y^2)+15xy-125. (Because x+y=5)
5x^2-5xy+5y^2+15xy-125
5x^2+5y^2+10xy-125
5(x^2+y^2+2xy)-125
5(x+y)^2 -125
5(5^2) -125. (because x+y=5)
125-125=0
Problem Loading...
Note Loading...
Set Loading...
x 3 + y 3 + 1 5 x y − 1 2 5 = ( x + y ) ( x 2 − x y + y 2 ) + 1 5 x y − 1 2 5 = ( x + y ) ( ( x + y ) 2 − 3 x y ) + 1 5 x y − 1 2 5 = ( x + y ) 3 − 3 ( x + y ) x y + 1 5 x y − 1 2 5 = 5 3 − 3 ( 5 ) x y + 1 5 x y − 1 2 5 = 1 2 5 − 1 5 x y + 1 5 x y − 1 2 5 = 0 Note that x + y = 5