Values of algebraic expressions

Algebra Level pending

x 3 + y 3 + 15 x y 125 x^3 + y^3 + 15xy -125

What is the value of the two-variable expression above, if x + y = 5 x+y=5 ?


The answer is 0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
Mar 11, 2020

x 3 + y 3 + 15 x y 125 = ( x + y ) ( x 2 x y + y 2 ) + 15 x y 125 = ( x + y ) ( ( x + y ) 2 3 x y ) + 15 x y 125 = ( x + y ) 3 3 ( x + y ) x y + 15 x y 125 Note that x + y = 5 = 5 3 3 ( 5 ) x y + 15 x y 125 = 125 15 x y + 15 x y 125 = 0 \begin{aligned} x^3 + y^3 + 15xy - 125 & = (x+y)(x^2-xy+y^2) + 15xy - 125 \\ & = (x+y)((x+y)^2 - 3xy) + 15xy - 125 \\ & = \blue{(x+y)}^3 - 3\blue{(x+y)}xy + 15xy - 125 & \small \blue{\text{Note that }x+y = 5} \\ & = \blue 5^3 - 3(\blue 5) xy + 15xy - 125 \\ & = 125 - 15xy + 15xy - 125 \\ & = \boxed 0 \end{aligned}

Patrick Corn
Mar 12, 2020

The expression factors: x 3 + y 3 + 15 x y 125 = ( x + y 5 ) ( x 2 x y + y 2 + 5 x + 5 y + 25 ) , x^3+y^3+15xy-125 = (x+y-5)(x^2 - xy + y^2 + 5x + 5y + 25), so the answer is 0 . \fbox{0}.

Sahar Bano
Mar 11, 2020

x^3 +y^3 +15xy-125

As (x+y)(x^2-2xy+y^2)=x^3 +y^3

Therefore we can simplify the expression as: (x+y)(x^2-2xy+y^2)+15xy-125

5(x^2-xy+y^2)+15xy-125. (Because x+y=5)

5x^2-5xy+5y^2+15xy-125

5x^2+5y^2+10xy-125

5(x^2+y^2+2xy)-125

5(x+y)^2 -125

5(5^2) -125. (because x+y=5)

125-125=0

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...