Variable rationality

Algebra Level pending

Given that x x , y y , p p and q q are non-zero real numbers such that

x 2 + y 2 p 2 + q 2 = x y p q \dfrac{x^2+y^2}{p^2+q^2} = \dfrac{xy}{pq}

Find the ratio x q : y p xq : yp .

2:3 1:2 3:2 Not enough information 3:1 1:3 2:1 1:1

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Viki Zeta
Sep 6, 2016

x 2 + y 2 p 2 + q 2 = x y p q p q ( x 2 + y 2 ) = x y ( p 2 + q 2 ) p q x 2 + p q y 2 = x y p 2 + x y q 2 p q x 2 x y q 2 = x y p 2 p q y 2 x q ( p x q y ) = p y ( p x q y ) x q = p y x q y p = 1 1 xq:yp = 1 : 1 \dfrac{x^2+y^2}{p^2+q^2}=\dfrac{xy}{pq} \\ \implies pq(x^2+y^2) = xy(p^2+q^2) \\ \implies pqx^2 + pqy^2 = xyp^2 + xyq^2 \\ \implies pqx^2 - xyq^2 = xyp^2 - pqy^2 \\ \implies xq(px - qy) = py(px - qy) \\ \implies xq = py \\ \implies \dfrac{xq}{yp} = \dfrac{1}{1} \\ \therefore \fbox{ xq:yp = 1 : 1 }

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...