Variable Summations

Algebra Level pending

Find the value for the above summation:

Providing that 'x' is an integer and the summation

x n f ( x ) \sum _{ x }^{ n }{ f\left( x \right) }

implies the sum of all the values created by the function (inputting the variables) for integers between 'x' and a value 'n' including 'x' and 'n' .

E.G.:

1 3 2 x + 1 \sum _{ 1 }^{ 3 }{ 2x+1 } =[2(1)+1]+[2(2)+1]+[2(3)+1]=3+5+7=15


The answer is 50006502.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

David Baker
Sep 26, 2014

I f w e m a k e S 1 = f ( x ) , t h e n S 1 2 x = S 1 H e n c e : S 1 2 x S 1 = 0 ; S 1 ( S 1 x ) = 0 [ a n d w e a s s u m e S 1 0 ( a s u n l e s s x = 0 i t m u s t h a v e v a l u e ) ] S 1 = x . N o w w e n e e d t o f i n d a g e n e r a l f o r m u l a f o r x n f ( x ) w h e r e n i s j u s t a n i n t e g e r g r e a t e r t h a n x . A s f ( x ) = x , x n f ( x ) = x + ( x + 1 ) + ( x + 2 ) . . . + n . w e c a n s a y x n f ( x ) = ( n 1 ) x + 1 2 ( n x ) ( n x + 1 ) ; x n f ( x ) = n x x + 1 2 n 2 + n 2 n x + x 2 x ; T h i s s i m p l i f i e s t o : x n f ( x ) = x 2 3 x + n 2 + n 2 N o w w e m u s t t r y t o f i n d x : I f g ( x ) = x + x + x + x + x + x + x . . . w e c a n s a y t h a t S 2 2 x = S 2 ; T h i s c a n b e s o l v e d ( a s a n y q u a d r a t i c ) t o g i v e : S = 1 ± 1 + 4 x 2 . W e a r e t o l d t h a t g ( x ) = x h e n c e 1 ± 1 + 4 x 2 = x T h i s c a n b e s o l v e d i n t w o u n i q u e w a y s ( d e p e n d i n g o n s i g n s ) , s i m p l y b y r e a r r a n g e m e n t : O n e w a y y i e l d s a s i n g l e r e s u l t x = 0 , t h e o t h e r y i e l d s t w o : x = 0 a n d x = 2. W e k n o w x 0 f r o m t h e q u e s t i o n , h e n c e f o r t h i s s o l u t i o n x = 2. T h e r e f o r e 5 x ( 5 x ) 2 f ( x ) c a n b e c h a n g e d t o 10 100 f ( x ) b y i n p u t o f x = 2. W e k n o w t h a t t h e s u m m a t i o n e q u a t i o n i s : x 2 3 x + n 2 + n 2 { o r 2 x 2 3 x + x 4 2 } . H e n c e t o f i n d t h e v a l u e o f t h e s u m m a t i o n : 2 ( 100 ) 2 3 ( 100 ) + ( 100 ) 4 2 2 ( 9 ) 2 3 ( 9 ) + ( 9 ) 4 2 = 50009850 3348 = 50006502 . If\quad we\quad make\quad { S }_{ 1 }=f(x),\quad then\quad \frac { { S }_{ 1 }^{ \quad 2 } }{ x } ={ S }_{ 1 }\\ \\ Hence:\quad { { S }_{ 1 } }^{ 2 }-x{ S }_{ 1 }=0\quad ;\quad { S }_{ 1 }({ S }_{ 1 }-x)=0\quad \\ [and\quad we\quad assume\quad { S }_{ 1 }\neq 0\quad \\ (as\quad unless\quad x=0\quad it\quad must\quad have\quad value)]\\ { S }_{ 1 }=x.\\ Now\quad we\quad need\quad to\quad find\quad a\quad general\quad formula\quad for\quad \\ \sum _{ x }^{ n }{ f(x) } \quad where\quad 'n'\quad is\quad just\quad an\quad integer\quad greater\quad than\quad x.\\ As\quad f\left( x \right) =x\quad ,\quad \sum _{ x }^{ n }{ f\left( x \right) } =\quad x+(x+1)+(x+2)...+n\quad .\quad \\ we\quad can\quad say\quad \sum _{ x }^{ n }{ f\left( x \right) } =\quad (n-1)x\quad +\quad \frac { 1 }{ 2 } (n-x)(n-x+1)\quad ;\quad \\ \sum _{ x }^{ n }{ f\left( x \right) } =\quad nx-x\quad +\quad \frac { 1 }{ 2 } { n }^{ 2 }+n-2nx+{ x }^{ 2 }-x\quad ;\quad \\ This\quad simplifies\quad to:\quad \sum _{ x }^{ n }{ f\left( x \right) } =\frac { { x }^{ 2 }-3x+{ n }^{ 2 }+n }{ 2 } \\ \\ Now\quad we\quad must\quad try\quad to\quad find\quad 'x':\\ \\ If\quad g\left( x \right) =\sqrt { x+\sqrt { x+\sqrt { x+\sqrt { x+\sqrt { x+\sqrt { x+\sqrt { x } ... } } } } } } \\ we\quad can\quad say\quad that\quad { { S }_{ 2 } }^{ 2 }-x={ S }_{ 2 };\\ \\ This\quad can\quad be\quad solved\quad (as\quad any\quad quadratic)\quad to\quad give:\quad \\ S=\frac { 1\pm \sqrt { 1+4x } }{ 2 } .\\ We\quad are\quad told\quad that\quad g(x)=\left| x \right| \quad hence\quad \frac { 1\pm \sqrt { 1+4x } }{ 2 } =\left| x \right| \\ This\quad can\quad be\quad solved\quad in\quad two\quad unique\quad ways\quad \\ (depending\quad on\quad signs),\quad simply\quad by\quad rearrangement:\\ One\quad way\quad yields\quad a\quad single\quad result\quad x=0,\\ the\quad other\quad yields\quad two:\quad x=0\quad and\quad x=2.\\ We\quad know\quad x\neq 0\quad from\quad the\quad question,\\ hence\quad for\quad this\quad solution\quad x=2.\\ \\ Therefore\quad \sum _{ 5x }^{ { (5x) }^{ 2 } }{ f\left( x \right) } can\quad be\quad changed\quad to\quad \\ \sum _{ 10 }^{ 100 } f\left( x \right) \quad by\quad input\quad of\quad x=2.\\ We\quad know\quad that\quad the\quad summation\quad equation\quad is:\\ \quad \frac { { x }^{ 2 }-3x+{ n }^{ 2 }+n }{ 2 } \\ \quad \{ or\quad \frac { { 2x }^{ 2 }-3x+{ x }^{ 4 } }{ 2 } \} .\\ Hence\quad to\quad find\quad the\quad value\quad of\quad the\quad summation:\quad \\ \\ \frac { { 2(100) }^{ 2 }-3(100)+{ (100) }^{ 4 } }{ 2 } -\frac { { 2(9) }^{ 2 }-3(9)+{ (9) }^{ 4 } }{ 2 } \\ =\quad 50009850-3348\\ \quad =\quad \boxed { 50006502 } .

P.S. Apologies for the horrendous layout of this solution. :/

The x in the f(x) in the 5 x ( 5 x ) 2 f ( x ) \displaystyle\sum_{5x}^{(5x)^2}f(x) kind of confused me. And why is 10 + 11 + 12 + + 100 10+11+12+\cdots+100 not equal to 5005 but 50006502?

Kenny Lau - 6 years, 7 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...