Variables and Exponents

Level 1

Given that 3 x y = 12 3x-y=12 , solve for 8 x 2 y \dfrac{8^x}{2^y} .


The answer is 4096.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
Feb 24, 2018

Similar solution as @Michael Wang 's, presented as follows:

8 x 2 y = 2 3 x 2 y = 2 3 x y Given that 3 x y = 12 = 2 12 = 4096 \begin{aligned} \frac {8x}{2^y} & = \frac {2^{3x}}{2^y} \\ & = 2^{\color{#3D99F6}3x-y} & \small \color{#3D99F6} \text{Given that }3x-y = 12 \\ & = 2^{\color{#3D99F6}12} \\ & = \boxed{4096} \end{aligned}

Solve for y \large{y} in terms of x \large{x} then substitute:

3 x y = 12 \large{3x-y=12} \large{\color{#D61F06}\implies} y = 3 x 12 \large{y=3x-12}

Substitute:

8 x 2 y = 2 3 x 2 3 x 12 = 2 3 x 2 3 x 2 12 = 1 2 12 = 1 1 2 12 = 1 1 × 2 12 1 = 2 12 = 4096 \large{\dfrac{8^x}{2^y}=\dfrac{2^{3x}}{2^{3x-12}}=\dfrac{2^{3x}}{2^{3x}2^{-12}}=\dfrac{1}{2^{-12}}=\dfrac{1}{\dfrac{1}{2^{12}}}=\dfrac{1}{1} \times \dfrac{2^{12}}{1}=2^{12}=\boxed{4096}}

Did you mean y = 3 x 12 y=3x-12 ?

Michael Wang - 3 years, 3 months ago
Michael Wang
Feb 24, 2018

8 x 2 y = ( 2 3 ) x 2 y = 2 3 x 2 y \frac{8^x}{2^y}=\frac{(2^3)^x}{2^y}=\frac{2^{3x}}{2^y} . Since it is given that 3 x y = 12 3x-y=12 , it concludes that 3 x = 12 + y 3x=12+y . Therefore, 2 3 x 2 y \frac{2^{3x}}{2^y} becomes 2 12 + y 2 y \frac{2^{12+y}}{2^y} , or 2 12 2 y 2 y \frac{2^{12}\cdot 2^y}{2^y} , or 2 12 2^{12} , or 4096 4096 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...