Vector Calc (1-14-2021)

Calculus Level 3

Consider a closed spherical surface S S :

x 2 + y 2 + z 2 = 1 x^2 + y^2 + z^2 = 1

There is a vector field throughout all of space:

F = ( F x , F y , F z ) F x = y 2 z + 2 x F y = x y + z F z = z 3 + x y \vec{F} = (F_x, F_y, F_z) \\ F_x = y^2 z + 2 x \\ F_y = x - y + z \\ F_z = z^3 + x y

Determine the absolute value of the flux of the vector field over the surface.

s F d S \Big|\iint_s \vec{F} \cdot \vec{dS} \Big|

Note: This one is fairly easy to do by hand


The answer is 6.702.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Karan Chatrath
Jan 14, 2021

Divergence theorem:

S F d S = V ( F ) d V \oiint_{S} \vec{F} \cdot \ d\vec{S}= \int \int \int_{V} (\nabla \cdot \vec{F}) \ dV

Now:

F = 1 + 3 z 2 \nabla \cdot \vec{F} = 1 + 3z^2 In spherical coordinates:

F = 1 + 3 r 2 cos 2 θ \nabla \cdot \vec{F} = 1 + 3r^2\cos^2{\theta} V ( F ) d V = 0 2 π 0 π 0 1 ( 1 + 3 r 2 cos 2 θ ) r 2 sin θ d r d θ d ϕ \therefore \int \int \int_{V} (\nabla \cdot \vec{F}) \ dV = \int_{0}^{2\pi} \int_{0}^{\pi} \int_{0}^{1} \left( 1 + 3r^2\cos^2{\theta} \right)r^2 \ \sin{\theta} \ dr \ d\theta \ d\phi

Integrating with respect to r r first gives (simplification left out):

V ( F ) d V = 0 2 π 0 π ( sin θ 3 + 3 cos 2 θ sin θ 5 ) d θ d ϕ \int \int \int_{V} (\nabla \cdot \vec{F}) \ dV=\int_{0}^{2\pi} \int_{0}^{\pi} \left( \frac{\sin{\theta}}{3} + \frac{3\cos^2{\theta}\sin{\theta}}{5} \right) \ d\theta \ d\phi Changing the order of the integral: V ( F ) d V = 0 π 0 2 π ( sin θ 3 + 3 cos 2 θ sin θ 5 ) d ϕ d θ \int \int \int_{V} (\nabla \cdot \vec{F}) \ dV=\int_{0}^{\pi} \int_{0}^{2\pi} \left( \frac{\sin{\theta}}{3} + \frac{3\cos^2{\theta}\sin{\theta}}{5} \right) \ d\phi \ d\theta V ( F ) d V = 2 π 0 π ( sin θ 3 + 3 cos 2 θ sin θ 5 ) d θ \implies \int \int \int_{V} (\nabla \cdot \vec{F}) \ dV=2\pi \int_{0}^{\pi} \left( \frac{\sin{\theta}}{3} + \frac{3\cos^2{\theta}\sin{\theta}}{5} \right) \ d\theta S F d S = V ( F ) d V = 32 π 15 \implies \oiint_{S} \vec{F} \cdot \ d\vec{S}=\int \int \int_{V} (\nabla \cdot \vec{F}) \ dV=\boxed{\frac{32\pi}{15}}

Nice job. As a side note, I made the divergence a pure function of z z so that the calculation could be done with a single integral.

Steven Chase - 4 months, 4 weeks ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...