Vector Calc 12-24-2020

Calculus Level pending

An open surface takes the form of a cone:

z = x 2 + y 2 0 z 1 z = \sqrt{x^2 + y^2} \\ 0 \leq z \leq 1

There is a vector field throughout all of space:

F = ( F x , F y , F z ) F x = x + y 2 z F y = x 2 + z F z = z 2 + y + z \vec{F} = (F_x, F_y, F_z) \\ F_x = x + y^2 - z \\ F_y = x^2 + z \\ F_z = z^2 + y + z

What is the absolute value of the flux of the vector field through the surface?

S F d S \Big| \iint_S \vec{F} \cdot \vec{dS} \Big|


The answer is 2.62.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Hosam Hajjir
Dec 25, 2020

If we close the surface by placing a disc of unit radius at z = 1 z = 1 , then we can evaluate the flux through the closed surface using the divergence theorem, which states that

S F d S = V div F d V \displaystyle \int_S \vec{F} \cdot \vec{dS} = \int_V \text{div} \vec{F} dV

We have,

div F = F x x + F y y + F x x = 1 + 0 + 2 z + 1 = 2 z + 2 \text{div} \vec{F} = \dfrac{\partial F_x}{\partial x} + \dfrac{\partial F_y}{\partial y}+ \dfrac{\partial F_x}{\partial x} = 1 + 0 + 2 z + 1 = 2 z + 2

In cylindrical coordinates, d V = d z r d r d ϕ dV = dz r dr d \phi

Hence

V div F d V = ϕ = 0 2 π r = 0 1 z = r 1 ( 2 z + 2 ) r d z d r d ϕ \displaystyle \int_V \text{div} \vec{F} dV = \int_{\phi = 0}^{2\pi} \int_{r= 0}^1 \int_{ z = r}^1 (2z + 2) r dz dr d \phi

= ϕ = 0 2 π r = 0 1 r ( z 2 + 2 z ) z = r z = 1 d r d ϕ = \displaystyle \int_{\phi = 0}^{2\pi} \int_{r= 0}^1 r (z^2 + 2 z)\Biggr|_{z=r}^{z=1} dr d \phi

= ϕ = 0 2 π r = 0 1 r ( 3 r 2 2 r ) d r d ϕ = \displaystyle \int_{\phi = 0}^{2\pi} \int_{r= 0}^1 r (3 - r^2 - 2 r ) dr d\phi

= ϕ = 0 2 π r = 0 1 ( 3 r r 3 2 r 2 ) d r d ϕ = \displaystyle \int_{\phi = 0}^{2\pi} \int_{r= 0}^1 (3 r - r^3 - 2 r^2 ) dr d\phi

= 2 π ( 3 2 1 4 2 3 ) = 7 π 6 = 2 \pi ( \frac{3}{2} - \frac{1}{4} - \frac{2}{3} ) = \dfrac{7\pi}{6}

Now the flux through the top (which has been added for the purpose of computation) is

ϕ = 0 2 π r = 0 1 F z ( r , ϕ ) r d r d ϕ \displaystyle \int_{\phi = 0}^{2\pi} \int_{r= 0}^1 F_z(r, \phi) r dr d\phi

= ϕ = 0 2 π r = 0 1 ( 2 + r s i n ϕ ) r d r d ϕ = \displaystyle \int_{\phi = 0}^{2\pi} \int_{r= 0}^1 (2 + r sin \phi) r dr d\phi

= ϕ = 0 2 π 1 + 1 2 s i n ϕ d ϕ = \displaystyle \int_{\phi = 0}^{2\pi} 1 + \frac{1}{2} sin \phi d \phi

= 2 π = 2 \pi

Hence the flux through the curved surface is 7 π 6 2 π \dfrac{7 \pi}{6} - 2 \pi = 5 π 6 -\dfrac{5 \pi}{ 6}

and since the question asks for the absolute value then the answer is 5 π 6 2.618 \dfrac{5 \pi}{6} \approx \boxed{2.618}

To verify our answer, we can evaluate the surface integral directly over the lateral surface of the cone.

In cylindral coordinates, the parametrization of the given cone surface is

p = ( r cos ϕ , r sin ϕ , r ) p = (r \cos \phi, r \sin \phi, r )

And the vector differential d S \vec{dS} is given by p ϕ × p r \dfrac{\partial p}{\partial \phi} \times \dfrac{\partial p}{\partial r }

p ϕ = ( r sin ϕ , r cos ϕ , 0 ) \dfrac{\partial p}{\partial \phi} = ( -r \sin \phi, r \cos \phi, 0 )

p r = ( cos ϕ , sin ϕ , 1 ) \dfrac{\partial p}{\partial r } = ( \cos \phi, \sin \phi, 1 )

so that,

p ϕ × p r = ( r cos ϕ , r sin ϕ , r ) \dfrac{\partial p}{\partial \phi} \times \dfrac{\partial p}{\partial r } = ( r \cos \phi, r \sin \phi, - r )

The expression for the vector field in cylindrical coordinates is

F ( r , ϕ ) = ( r cos ϕ + r 2 sin 2 ϕ r , r 2 cos 2 ϕ + r , r 2 + r sin ϕ + r ) \vec{F}(r, \phi) = (r \cos \phi + r^2 \sin^2 \phi -r, r^2 \cos^2 \phi + r, r^2 + r \sin \phi + r )

Forming the dot product between F \vec{F} and d S \vec{dS} results in the following expression

F d S = ( r cos ϕ ) ( r cos ϕ + r 2 sin 2 ϕ r ) + ( r sin ϕ ) ( r 2 cos 2 ϕ + r ) r ( r 2 + r sin ϕ + r ) \vec{F} \cdot \vec{dS} = (r \cos \phi)( r \cos \phi + r^2 \sin^2 \phi - r ) + (r \sin \phi)( r^2 \cos^2 \phi + r ) - r ( r^2 + r \sin \phi + r )

Integrating this huge expression with respect to ϕ \phi first annihilates (kills) all the terms containing cos ϕ \cos \phi and sin ϕ \sin \phi

because their integrals over [ 0 , 2 π ] [0, 2 \pi ] is zero. Hence,

S F d S = r = 0 1 ϕ = 0 2 π [ ( r cos ϕ ) ( r cos ϕ + r 2 sin 2 ϕ ) + ( r sin ϕ ) ( r 2 cos 2 ϕ ) r ( r 2 + r ) ] d ϕ d r \displaystyle \int_S \vec{F} \cdot \vec{dS} = \int_{r = 0}^1 \int_{\phi=0}^{2\pi} [ (r \cos \phi)( r \cos \phi + r^2 \sin^2 \phi) + (r \sin \phi)( r^2 \cos^2 \phi ) - r ( r^2 + r ) ] d\phi dr

= r = 0 1 π r 2 r ( r 2 + r ) ( 2 π ) d r =\displaystyle \int_{r = 0}^1 \pi r^2 - r ( r^2 + r ) (2 \pi) d r

= π ( 1 3 1 2 2 3 ) = π 6 ( 2 3 4 ) = 5 π 6 = \pi ( \frac{1}{3} - \frac{1}{2} - \frac{2}{3} ) = \dfrac{\pi}{6} (2 - 3 - 4) = -\dfrac{5 \pi}{6}

Which is in agreement with our previous result.

Karan Chatrath
Dec 24, 2020

A point on the surface of the cone is:

r = x i ^ + y j ^ + x 2 + y 2 k ^ \vec{r} = x \ \hat{i} + y \ \hat{j} + \sqrt{x^2+y^2} \ \hat{k}

We can write the surface area element as:

d S = ( r x × r y ) d y d x d\vec{S} =\left( \frac{\partial \vec{r}}{\partial x} \times \frac{\partial \vec{r}}{\partial y}\right) dy \ dx

Plugging in values and evaluating the surface area element vector yields:

d S = ( x z i ^ y z j ^ + k ^ ) d y d x d\vec{S} = \left(-\frac{x}{z}\ \hat{i} - \frac{y}{z} \ \hat{j} + \hat{k}\right) dy \ dx

Now, the dot product F d S \vec{F} \cdot d\vec{S} is evaluated which after simplification leads to:

F d S = ( x + x 2 + y 2 + x 2 + y 2 ( x 2 + x y ( x + y ) x 2 + y 2 ) ) d y d x \vec{F} \cdot d\vec{S} = \left(x + x^2+y^2 + \sqrt{x^2+y^2} -\left(\frac{x^2+xy(x+y)}{ \sqrt{x^2+y^2} }\right)\right) dy \ dx

Calculating the surface integral involves integrating the above function over the unit circle centred at the origin:

S F d S = 1 1 1 x 2 1 x 2 ( x + x 2 + y 2 + x 2 + y 2 ( x 2 + x y ( x + y ) x 2 + y 2 ) ) d y d x \int \int_{S} \vec{F} \cdot d\vec{S} = \int_{-1}^{1} \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} \left(x + x^2+y^2 + \sqrt{x^2+y^2} -\left(\frac{x^2+xy(x+y)}{ \sqrt{x^2+y^2} }\right)\right) dy \ dx

This integral can be tackled by converting to polar coordinates. These steps are left out. The transformed integral is:

S F d S = 0 2 π 0 1 ( r cos θ + r 2 + r r cos 2 θ r 2 sin θ cos θ ( sin θ + cos θ ) ) r d r d θ \int \int_{S} \vec{F} \cdot d\vec{S} = \int_{0}^{2 \pi} \int_{0}^{1}\left(r\cos{\theta} + r^2+r-r\cos^2{\theta} - r^2\sin{\theta}\cos{\theta}(\sin{\theta}+\cos{\theta})\right) r \ dr \ d\theta

Evaluating the above is trivial and the closed-form solution is:

S F d S = 5 π 6 \boxed{\int \int_{S} \vec{F} \cdot d\vec{S} =\frac{5 \pi}{6}}

Wishing you a merry Christmas. Thanks for posting great problems and solutions this year. Looking forward to more.

Karan Chatrath - 5 months, 2 weeks ago

Log in to reply

Merry Christmas to you as well. I am always impressed by your solutions. Just as a double-check on this one, I computed the flux through the cone and through the top disk that would close the surface. I then verified that the sum of the two fluxes is equal to the volume integral of the divergence of the vector field.

Steven Chase - 5 months, 2 weeks ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...