Vector Fundamentals

Geometry Level pending

a , b \overrightarrow{a},\overrightarrow{b} are two vectors such that 2 a b 3 |2\overrightarrow{a}-\overrightarrow{b}| \leq 3 , find the minimum value of 1000 a b \lfloor 1000\overrightarrow{a} \cdot \overrightarrow{b} \rfloor .

Note: n |\overrightarrow{n}| notes the length of the vector on the Euclidean plane. i.e. The Euclidean norm.

Extra: How many degrees of freedom does this system have?


The answer is -1125.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

From the given inequality we get a b 4 a 2 + b 2 9 4 \overrightarrow a \cdot \overrightarrow b\geq \dfrac{4a^2+b^2-9}{4} . Also a b a b a b 4 a 2 + b 2 9 4 a b 4 a 2 4 a b + b 2 9 2 a b 3 2 a b + 3 4 a 2 + b 2 9 2 b 2 6 b -ab\leq \overrightarrow a \cdot \overrightarrow b\leq ab\implies \dfrac{4a^2+b^2-9}{4}\leq ab\implies 4a^2-4ab+b^2\leq 9\implies 2a-b\leq 3\implies 2a\leq b+3\implies 4a^2+b^2-9\geq 2b^2-6b . Therefore 1000 a b 250 ( 4 a 2 + b 2 9 ) 500 ( b 2 3 b ) = 500 [ ( b 3 2 ) 2 9 4 ] 1125 1000\overrightarrow a\cdot \overrightarrow b\geq 250(4a^2+b^2-9)\geq 500(b^2-3b)=500[(b-\dfrac{3}{2})^2-\dfrac{9}{4}]\geq \boxed {-1125}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...