Vector rotation around X-axis

Algebra Level pending

If the vector V = [ 2 , 5 , 3 ] T \vec {V} = [2, 5, 3 ]^T rotates 9 0 -90^\circ about the x x -axis, then the rotated vector can be expressed as __________ . \text{\_\_\_\_\_\_\_\_\_\_}.

[ 2 , 5 , 3 ] T [2, 5, -3 ]^T [ 2 , 3 , 5 ] T [2, 3, -5 ]^T [ 2 , 3 , 5 ] T [2, -3, -5 ]^T [ 3 , 2 , 5 ] T [3, -2, -5 ]^T

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Ossama Ismail
Mar 23, 2017

Also you can solve this problem using the 3 × 3 3 \times 3 rotation matrix about X-axis by angle θ \theta :

R x , θ = ( 1 0 0 0 cos ( θ ) sin ( θ ) 0 sin ( θ ) cos ( θ ) ) = ( 1 0 0 0 0 1 0 1 0 ) Rotated vector = [ R x , 90 ] T . V = ( 1 0 0 0 0 1 0 1 0 ) . ( 2 5 3 ) = ( 2 3 5 ) \begin{aligned} R_{x,\theta} &= \left(\begin{array}{ccc} 1 & 0 & 0\\ 0 & \cos(\theta) &-\sin(\theta) \\ 0 & \sin(\theta) &\cos(\theta) \\ \end{array}\right) = \left(\begin{array}{ccc} 1 & 0 & 0\\ 0 &0 &1 \\ 0 & -1 &0\\ \end{array}\right) \\ \\ \\ \text{Rotated vector } &= {[R_{x,-90}]}^T . \vec V = \left(\begin{array}{ccc} 1 & 0 & 0\\ 0 &0 &-1 \\ 0 & 1 &0\\ \end{array}\right) . \left(\begin{array}{c} 2\\ 5 \\ 3\\ \end{array}\right) = \left(\begin{array}{c} 2\\ 3 \\ -5\\ \end{array}\right) \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...