Vector rotation around Z-axis

Geometry Level pending

If the vector V = [ 2 , 5 , 3 ] T \vec {V} = [2, 5, 3 ]^T rotates 18 0 180^\circ about the z z -axis, then the rotated vector can be expressed as _________ . \text{\_\_\_\_\_\_\_\_\_}.

[ 2 , 5 , 3 ] T [2, -5, -3 ]^T [ 2 , 5 , 3 ] T [-2, -5, 3 ]^T [ 2 , 5 , 3 ] T [-2, 5, - 3 ]^T [ 2 , 3 , 5 ] T [2, -3, 5 ]^T

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Ossama Ismail
Mar 23, 2017

You can solve this problem by using the 3 × 3 3 \times 3 rotation matrix about Z-axis by angle θ = 18 0 \theta = 180^\circ :

R z , θ = ( cos ( θ ) sin ( θ ) 0 sin ( θ ) cos ( θ ) 0 0 0 1 ) = ( 1 0 0 0 1 0 0 0 1 ) Rotated vector = [ R z , 180 ] . V = ( 1 0 0 0 1 0 0 0 1 ) . ( 2 5 3 ) = ( 2 3 5 ) \begin{aligned} R_{z,\theta} &= \left(\begin{array}{ccc} \cos(\theta) & -\sin(\theta) & 0\\ \sin(\theta) &\cos(\theta) &0 \\ 0 & 0 &1 \\ \end{array}\right) = \left(\begin{array}{ccc} -1 & 0 & 0\\ 0 &-1 &0 \\ 0 & 0 &1\\ \end{array}\right) \\ \\ \\ \text{Rotated vector } &= {[R_{z,180}]}. \vec V = \left(\begin{array}{ccc} -1 & 0 & 0\\ 0 &-1 &0 \\ 0 & 0 &1\\ \end{array}\right) . \left(\begin{array}{c} 2\\ 5 \\ 3\\ \end{array}\right) = \left(\begin{array}{c} -2\\ -3 \\ 5\\ \end{array}\right) \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...