Vectors and conic sections - Part 1

Geometry Level 3

As shown above, the hyperbola C C has the equation: x 2 a 2 y 2 = 1 ( a > 0 ) \dfrac{x^2}{a^2}-y^2=1 (a>0) and it intersects with line l : x + y = 1 l:\ x+y=1 at point A A and B B respectively. l l intersects with the y y -axis at point P P .

Given that P A = 5 12 P B \overrightarrow{PA}=\dfrac{5}{12}\overrightarrow{PB} , find the value of a a .

If a a can be expressed as p q \dfrac{p}{q} , where p p , and q q are coprime positive integers. Submit p + q p+q .


The answer is 30.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Position coordinates of P P are ( 0 , 1 ) (0,1) . Let the position coordinates of A A and B B be ( h , 1 h ) (h, 1-h) and ( k , 1 k ) (k, 1-k) respectively.

Then P A = 5 12 P B k = 12 h 5 h + k = 17 h 5 , h k = 12 h 2 5 |\overline {PA}|=\dfrac{5}{12}|\overline {PB}|\implies k=\dfrac{12h}{5}\implies h+k=\dfrac{17h}{5}, hk=\dfrac{12h^2}{5} .

Solving the equations of the hyperbola and the straight line we get ( a 2 1 ) x 2 2 a 2 x + 2 a 2 = 0 (a^2-1)x^2-2a^2x+2a^2=0 , whose roots are h , k h, k . Therefore h + k = 2 a 2 a 2 1 = 17 h 5 , h k = 2 a 2 a 2 1 = 12 h 2 5 h+k=\dfrac{2a^2}{a^2-1}=\dfrac{17h}{5}, hk=\dfrac{2a^2}{a^2-1}=\dfrac{12h^2}{5} . So, 120 a 2 = 289 a 2 289 169 a 2 = 289 a = 17 13 120a^2=289a^2-289\implies 169a^2=289\implies a=\dfrac{17}{13} . Therefore p = 17 , q = 13 p=17, q=13 and p + q = 30 p+q=\boxed {30} .

The two points A ( x a , y a ) A(x_a, y_a) and B ( x b , y b ) B(x_b, y_b) satisfy both x 2 a 2 y 2 = 1 \dfrac {x^2}{a^2} - y^2 = 1 and x + y = 1 y = 1 x x + y = 1 \implies y = 1 -x and therefore,

y 2 = x 2 a 2 1 a 2 ( 1 x ) 2 = x 2 a 2 ( a 2 1 ) x 2 2 a 2 x + 2 a 2 = 0 \begin{aligned} y^2 & = \frac {x^2}{a^2} - 1 \\ a^2(1-x)^2 & = x^2 - a^2 \\ (a^2-1)x^2 - 2a^2x + 2a^2 & = 0 \end{aligned}

x = a 2 ± a 2 a 2 a 2 1 x a = a 2 a 2 a 2 a 2 1 \implies x = \dfrac {a^2 \pm a\sqrt{2-a^2}}{a^2-1} \implies x_a = \dfrac {a^2 - a\sqrt{2-a^2}}{a^2-1} and x b = a 2 + a 2 a 2 a 2 1 x_b = \dfrac {a^2 + a\sqrt{2-a^2}}{a^2-1} We note that P A P B = x a x b \dfrac {PA}{PB} = \dfrac {x_a}{x_b} , therefore,

a 2 a 2 a 2 a 2 + a 2 a 2 = 5 12 a 2 a 2 a + 2 a 2 = 5 12 12 a 12 2 a 2 = 5 a + 5 2 a 2 7 a = 17 2 a 2 49 a 2 = 289 ( 2 a 2 ) a 2 = 289 169 a = 17 13 \begin{aligned} \frac {a^2-a\sqrt{2-a^2}}{a^2+a\sqrt{2-a^2}} & = \frac 5{12} \\ \frac {a-\sqrt{2-a^2}}{a+\sqrt{2-a^2}} & = \frac 5{12} \\ 12a - 12\sqrt{2-a^2} & = 5a + 5\sqrt{2-a^2} \\ 7a & = 17\sqrt{2-a^2} \\ 49a^2 & = 289(2-a^2) \\ a^2 & = \frac {289}{169} \\ \implies a & = \frac {17}{13} \end{aligned}

Therefore, p + q = 17 + 13 = 20 p+q = 17+13 = \boxed {20} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...