Vectors and conic sections - Part 3

Geometry Level pending

As shown above, F 1 ( 1 , 0 ) F_1(-1,0) , F 2 ( 1 , 0 ) F_2(1,0) . line l l passes through F 1 F_1 and intersects with the parabola y 2 = 4 x y^2=4x at point P , Q P,Q . Given that F 1 P = λ F 1 Q \overrightarrow{F_1P}=\lambda \overrightarrow{F_1Q} , where λ [ 2 , 3 ] \lambda \in [2,3] , find the range of F 2 P F 2 Q \overrightarrow{F_2P} \cdot \overrightarrow{F_2Q} .

If the range can be expressed as [ l , r ] [l,r] , submit 10000 ( r l ) \lfloor 10000(r-l) \rfloor .


The answer is 8333.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Let the coordinates of P ( x p , y p ) P(x_p, y_p) and Q ( x q , y q ) Q(x_q, y_q) . Since F 1 F_1 is on the directrix and F 2 F_2 is the focus of the parabola, this means that x p + 1 = F 2 P = u x_p+1 = |F_2P|=u and x q + 1 = F 2 Q = v x_q+1 = |F_2Q|=v as shown in the figure.

Since F 1 P F 1 Q = x p + 1 x q + 1 = F 2 P F 2 Q = u v = λ u = λ v \dfrac {|F_1P|}{|F_1Q|} = \dfrac {x_p+1}{x_q+1} = \dfrac {|F_2P|}{|F_2Q|} = \dfrac uv= \lambda \implies u=\lambda v . Also F 1 P = ( 1 + x p ) 2 + y p 2 = u 2 + 4 x p = u 2 + 4 u 4 |F_1P| = \sqrt{(1+x_p)^2+y_p^2} = \sqrt{u^2+4x_p} = \sqrt{u^2+4u-4} ; similarly, F 1 Q = v 2 + 4 v 4 |F_1Q| = \sqrt{v^2+4v-4} . As F 1 P = λ F 1 Q |F_1P| = \lambda |F_1Q| , we have:

u 2 + 4 u 4 = λ v 2 + 4 v 4 u 2 + 4 u 4 = λ 2 ( v 2 + 4 v 4 ) Since u = λ v λ 2 v 2 + 4 λ v 4 = λ 2 v 2 + 4 λ 2 v 4 λ 2 4 λ ( λ 1 ) v = 4 ( λ 2 1 ) v = λ + 1 λ \begin{aligned} \sqrt{u^2+4u-4} & = \lambda \sqrt{v^2+4v-4} \\ u^2+4u-4 & = \lambda^2(v^2+4v-4) & \small \blue{\text{Since }u=\lambda v} \\ \lambda^2v^2+4\lambda v-4 & = \lambda^2v^2+4\lambda^2v-4\lambda^2 \\ 4\lambda(\lambda-1)v & = 4(\lambda^2-1) \\ \implies v & = \frac {\lambda+1}\lambda \end{aligned}

Now F 2 P F 1 Q = u v = λ v 2 = ( λ + 1 ) 2 λ |F_2P| \cdot |F_1Q| = uv = \lambda v^2 = \dfrac {(\lambda+1)^2}\lambda { λ = 2 u v = 9 2 λ = 3 u v = 16 3 \implies \begin{cases} \lambda = 2 & \implies uv = \frac 92 \\ \lambda = 3 & \implies uv = \frac {16}3 \end{cases} 10000 ( r l ) = 8333 \implies \lfloor 10000 (r-l) \rfloor = \boxed{8333} .

Let the equation of F 1 P \overline {F_1P} be y = m ( x + 1 ) y=m(x+1) , the position coordinates of points P , Q P, Q be ( h 2 , 2 h ) , ( k 2 , 2 k ) (h^2,2h), (k^2,2k) respectively. Then the given equation implies

λ 2 ( ( k 2 + 1 ) 2 + 4 k 2 ) = ( h 2 + 1 ) 2 + 4 h 2 \lambda^2\left ((k^2+1)^2+4k^2\right )=(h^2+1)^2+4h^2

Solving the equations of the parabola and the straight line we get

m 2 ( x + 1 ) 2 4 x = 0 m^2(x+1)^2-4x=0 , whose roots are h 2 , k 2 h^2,k^2 . So h k = 1 k = 1 h hk=1\implies k=\dfrac{1}{h} .

Therefore λ 2 ( ( 1 h 2 + 1 ) 2 + 4 h 2 ) = ( h 2 + 1 ) 2 + 4 h 2 h 2 = λ \lambda^2\left ((\frac{1}{h^2}+1)^2+\frac{4}{h^2}\right ) =(h^2+1)^2+4h^2\implies h^2=\lambda .

Now, F 2 P . F 2 Q = 6 ( h 2 + 1 h 2 ) \vec {F_2P}.\vec {F_2Q}=6-(h^2+\frac{1}{h^2})

So, r = 6 2.5 = 3.5 , l = 6 10 3 = 8 3 = 2.666666... r=6-2.5=3.5, l=6-\frac{10}{3}=\frac{8}{3}=2.666666... , and r l 0.8333333 10000 ( r l ) = 8333 r-l\approx 0.8333333\implies \lfloor 10000(r-l)\rfloor =\boxed {8333}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...