Velocity and Acceleration

Calculus Level 4

A particle moves according to the following movement's law:

r ( t ) = ( 3 t 2 + 5 ) E x 2 t E y ( I . S . ) \vec{r}(t)=(3{ t }^{ 2 }+5)\vec{{ E }_{ x }} - 2t\vec{{ E }_{ y }} (I.S.)

For t = 1 s t=1s , calculate the angle (to the nearest degree) between v \vec{v} and a \vec{a} .


The answer is 18.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

v ( t ) = d r d t \vec{v}(t)=\frac { d\vec { r } }{ dt } = 6 t E x 2 E y 6t \vec{{ E }_{ x }} - 2\vec{{ E }_{ y }}

v ( 1 ) \vec{v}(1) = 6 E x 2 E y 6 \vec{{ E }_{ x }} - 2\vec{{ E }_{ y }} .

a ( t ) \vec { a } (t) = d v d t \frac { d\vec { v } }{ dt } = 6 E x 6 \vec{{ E }_{ x }}

a ( 1 ) \vec { a } (1) = 6 E x 6 \vec{{ E }_{ x }}

a ( 1 ) v ( 1 ) \vec { a }(1) \cdot \vec{v}(1) = a ( 1 ) × v ( 1 ) × c o s θ \left\| \vec { a }(1) \right\|\times \left\| \vec{v}(1) \right\| \times \ cos\theta \Leftrightarrow c o s θ cos\theta = a ( 1 ) v ( 1 ) a ( 1 ) × v ( 1 ) \frac { \vec { a }(1) \cdot \vec{v}(1) }{ \left\| \vec { a }(1) \right\|\times \left\| \vec{v}(1) \right\| } \Leftrightarrow c o s θ cos\theta = 6 × 6 + ( 2 ) × 0 6 2 × 6 2 + ( 2 ) 2 \frac { 6\times 6+(-2)\times 0 }{ \sqrt { { 6 }^{ 2 } } \times \sqrt { { 6 }^{ 2 }+{ (-2) }^{ 2 } } } \Leftrightarrow θ 18 º \theta \approx 18º

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...