Find ∑ ( x + y ) if ( x , y ) indicates the pairs that are the solutions of the equation- ( x 2 + 1 ) ( y 2 + 1 ) + 2 ( x − y ) ( 1 − x y ) = 4 ( 1 + x y )
x , y ∈ Z
Note-This problem is not mine. ∑ ( x + y ) indicates sum of all pairs satisfying the equality
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
You meant x , y ∈ Z , so please add it.
Notice that 2 ( x − y ) ( 1 − x y ) = 2 x ( y 2 + 1 ) − 2 y ( x 2 + 1 ) .
( x 2 + 1 ) ( y 2 + 1 ) ⟺ ( x 2 + 1 ) ( y 2 + 1 ) + 2 ( x − y ) ( 1 − x y ) + 2 x ( y 2 + 1 ) − 2 y ( x 2 + 1 ) = 4 ( 1 + x y ) = 4 ( 1 + x y )
Remember that a b + m a + n b + m n = ( a + n ) ( b + m ) . Thus:
⟺ ( x 2 + 1 + 2 x ) ( y 2 + 1 − 2 y ) ⟺ ( x + 1 ) 2 ( y − 1 ) 2 ⟺ ( x + 1 ) ( y − 1 ) = 4 = 4 = ± 2 ⟺ ⎩ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎧ { x + 1 y − 1 = 2 = 1 or { x + 1 y − 1 = − 2 = − 1 or { x + 1 y − 1 = − 2 = 1 or { x + 1 y − 1 = 2 = − 1 or { x + 1 y − 1 = 1 = 2 or { x + 1 y − 1 = − 1 = − 2 or { x + 1 y − 1 = − 1 = 2 or { x + 1 y − 1 = 1 = − 2 ⟺ ⎩ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎧ { x y = 1 = 2 or { x y = − 3 = 0 or { x y = − 3 = 2 or { x y = 1 = 0 or { x y = 0 = 3 or { x y = − 2 = − 1 or { x y = − 2 = 3 or { x y = 0 = − 1 ⟺ i = 0 ∑ 7 ( x i + y i ) = 0
Okay! I shall add it in! Voted you up for the pains you took to write so much in LaTex!
Was this problem too easy a Level 5?
Log in to reply
It should be a Level 4, I think! After simplifying, it is easy to find the solutions.
( x 2 + 1 ) ( y 2 + 1 ) + 2 ( x − y ) ( 1 − x y ) = 4 + 4 x y
x 2 y 2 + x 2 + y 2 + 1 − 4 x y + 2 ( x − y ) ( 1 − x y ) = 4
x 2 y 2 + 1 − 2 x y + x 2 + y 2 − 2 x y + 2 ( x − y ) ( 1 − x y ) = 4
( x − y ) 2 + ( 1 − x y ) 2 + 2 ( x − y ) ( 1 − x y ) = 4
( x − y + x y − 1 ) 2 = 4
x − y + x y − 1 = 2
x − y − x y + 1 = 2
x − y − x y = 1
Let us assume that x = 0. Solving quadratic in y with x = 0, we get ........
y = -1.. OR.. y = 3. Solution (0, -1) , (0, 3).
In same way for y = 0, we get..
( -3, 0), (1, 0). Adding them all we get 0.
Problem Loading...
Note Loading...
Set Loading...
No tedious math needed:
Suppose that ( a , b ) is a solution. Then, it is easy to see that ( − b , − a ) is also a solution. Thus, the sum of all the solutions must be 0 .