Venerable Soul!

Find ( x + y ) \sum(x+y) if ( x , y ) (x,y) indicates the pairs that are the solutions of the equation- ( x 2 + 1 ) ( y 2 + 1 ) + 2 ( x y ) ( 1 x y ) = 4 ( 1 + x y ) (x^{2}+1)(y^2+1)+2(x-y)(1-xy)=4(1+xy)

x , y Z x,y \in \mathbb{Z}

Note-This problem is not mine. ( x + y ) \sum(x+y) indicates sum of all pairs satisfying the equality


The answer is 0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Daniel Liu
Aug 27, 2014

No tedious math needed:

Suppose that ( a , b ) (a,b) is a solution. Then, it is easy to see that ( b , a ) (-b,-a) is also a solution. Thus, the sum of all the solutions must be 0 0 .

Mathh Mathh
Aug 26, 2014

You meant x , y Z x,y\in\mathbb Z , so please add it.


Notice that 2 ( x y ) ( 1 x y ) = 2 x ( y 2 + 1 ) 2 y ( x 2 + 1 ) 2(x-y)(1-xy)=2x(y^2+1)-2y(x^2+1) .

( x 2 + 1 ) ( y 2 + 1 ) + 2 ( x y ) ( 1 x y ) = 4 ( 1 + x y ) ( x 2 + 1 ) ( y 2 + 1 ) + 2 x ( y 2 + 1 ) 2 y ( x 2 + 1 ) = 4 ( 1 + x y ) \begin{aligned} (x^2+1)(y^2+1)&+2(x-y)(1-xy)&=4(1+xy)\\ \iff (x^2+1)(y^2+1)&+2x(y^2+1)-2y(x^2+1)&=4(1+xy)\end{aligned}

Remember that a b + m a + n b + m n = ( a + n ) ( b + m ) ab+ma+nb+mn=(a+n)(b+m) . Thus:

( x 2 + 1 + 2 x ) ( y 2 + 1 2 y ) = 4 ( x + 1 ) 2 ( y 1 ) 2 = 4 ( x + 1 ) ( y 1 ) = ± 2 \begin{aligned} \iff (x^2+1+2x)(y^2+1-2y)&=4\\ \iff (x+1)^2(y-1)^2&=4\\ \iff (x+1)(y-1)&=\pm 2\end{aligned} { { x + 1 = 2 y 1 = 1 or { x + 1 = 2 y 1 = 1 or { x + 1 = 2 y 1 = 1 or { x + 1 = 2 y 1 = 1 or { x + 1 = 1 y 1 = 2 or { x + 1 = 1 y 1 = 2 or { x + 1 = 1 y 1 = 2 or { x + 1 = 1 y 1 = 2 { { x = 1 y = 2 or { x = 3 y = 0 or { x = 3 y = 2 or { x = 1 y = 0 or { x = 0 y = 3 or { x = 2 y = 1 or { x = 2 y = 3 or { x = 0 y = 1 i = 0 7 ( x i + y i ) = 0 \begin{aligned}\iff \begin{cases}\begin{cases}x+1&=2\\y-1&=1\end{cases}\\\text{or}\\\begin{cases}x+1&=-2\\y-1&=-1\end{cases}\\\text{or}\\\begin{cases}x+1&=-2\\y-1&=1\end{cases}\\\text{or}\\\begin{cases}x+1&=2\\y-1&=-1\end{cases}\\\text{or}\\\begin{cases}x+1&=1\\y-1&=2\end{cases}\\\text{or}\\\begin{cases}x+1&=-1\\y-1&=-2\end{cases}\\\text{or}\\\begin{cases}x+1&=-1\\y-1&=2\end{cases}\\\text{or}\\\begin{cases}x+1&=1\\y-1&=-2\end{cases}\end{cases} \iff \begin{cases}\begin{cases}x&=1\\y&=2\end{cases}\\\text{or}\\\begin{cases}x&=-3\\y&=0\end{cases}\\\text{or}\\\begin{cases}x&=-3\\y&=2\end{cases}\\\text{or}\\\begin{cases}x&=1\\y&=0\end{cases}\\\text{or}\\\begin{cases}x&=0\\y&=3\end{cases}\\\text{or}\\\begin{cases}x&=-2\\y&=-1\end{cases}\\\text{or}\\\begin{cases}x&=-2\\y&=3\end{cases}\\\text{or}\\\begin{cases}x&=0\\y&=-1\end{cases}\end{cases} \\ \iff \sum_{i=0}^{7} (x_i+y_i)=\boxed{0}\end{aligned}

Okay! I shall add it in! Voted you up for the pains you took to write so much in LaTex!

Krishna Ar - 6 years, 9 months ago

Was this problem too easy a Level 5?

Krishna Ar - 6 years, 9 months ago

Log in to reply

It should be a Level 4, I think! After simplifying, it is easy to find the solutions.

Kartik Sharma - 6 years, 9 months ago

( x 2 + 1 ) ( y 2 + 1 ) + 2 ( x y ) ( 1 x y ) = 4 + 4 x y ({x}^{2} + 1)({y}^{2} + 1) + 2(x-y)(1-xy) = 4 + 4xy

x 2 y 2 + x 2 + y 2 + 1 4 x y + 2 ( x y ) ( 1 x y ) = 4 {x}^{2}{y}^{2} + {x}^{2} + {y}^{2} + 1 -4xy + 2(x-y)(1-xy)= 4

x 2 y 2 + 1 2 x y + x 2 + y 2 2 x y + 2 ( x y ) ( 1 x y ) = 4 {x}^{2}{y}^{2} + 1 - 2xy + {x}^{2} + {y}^{2} - 2xy + 2(x-y)(1-xy) = 4

( x y ) 2 + ( 1 x y ) 2 + 2 ( x y ) ( 1 x y ) = 4 {(x-y)}^{2} + {(1- xy)}^{2} + 2(x-y)(1-xy) = 4

( x y + x y 1 ) 2 = 4 {(x - y + xy - 1)}^ {2} = 4

x y + x y 1 = 2 x - y + xy - 1 = 2

x y x y + 1 = 2 x - y -xy + 1 = 2

x y x y = 1 x - y - xy = 1

Kartik Sharma - 6 years, 9 months ago

Let us assume that x = 0. Solving quadratic in y with x = 0, we get ........ y = -1.. OR.. y = 3. Solution (0, -1) , (0, 3).
In same way for y = 0, we get.. ( -3, 0), (1, 0). Adding them all we get 0.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...