Cryptogram.

Logic Level 1

A B C D C × 9 C D C B A \large \begin{array} {cr} & A\ B\ C\ D\ C \\ \times & 9 \\ \hline & C\ D\ C\ B\ A \end{array}

Find A + B + C + D A + B + C + D .


The answer is 18.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Oct 17, 2019

A B C D C × 9 = C D C B A 90000 A + 9000 B + 900 C + 90 D + C = 10000 C + 1000 D + 100 C + 10 B + A 89999 A + 8990 B = 9191 C + 910 D = 91 ( 101 C + 10 D ) \small \begin{aligned} \overline{ABCDC} \times 9 & = \overline{CDCBA} \\ 90000A + 9000B + 900C + 90D + C & = 10000C + 1000D + 100C + 10B + A \\ 89999A + 8990B & = 9191C + 910D = 91(101C +10D) \end{aligned}

We note that the RHS is divisible by 91, therefore the LHS is also divisible by 91 or:

89999 A + 8990 B 0 (mod 91) ( 0 ) A + 72 B 0 (mod 91) B = 0 \begin{aligned} 89999A + 8990B & \equiv 0 \text{ (mod 91)} \\ (0)A +72B & \equiv 0 \text{ (mod 91)} \\ \implies B & = 0 \end{aligned}

Then we have:

89999 A = 9191 C + 910 D Divide both sides by 91 989 A = 101 C + 10 D RHS is maximum when C = D = 9 989 A 999 For A 0 A = 1 989 = 101 C + 10 D = C D C C = 9 D = 8 \begin{aligned} 89999A & = 9191C + 910D & \small \blue{\text{Divide both sides by }91} \\ 989 A & = 101C + 10D & \small \blue{\text{RHS is maximum when }C=D=9} \\ 989 A & \le 999 & \small \blue{\text{For }A \ne 0} \\ \implies A & = 1 \\ \implies 989 & = 101C + 10D = \overline{CDC} \\ \implies C & = 9 \implies D = 8 \end{aligned}

Therefore A + B + C + D = 1 + 0 + 9 + 8 = 18 A+B+C+D = 1+0+9+8 = \boxed{18} .

Since the multiplication product is a five digit number, A A must be 1 1 and B B must be 0 0 . Hence C = 9 × 1 = 9 C=9\times 1=9 and D = 8 D=8 . Therefore A + B + C + D = 18 A+B+C+D=\boxed {18}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...