Verifying Statements (Algebra)

Algebra Level 2

If a , b , a, b, and c c are real numbers greater than 1 -1 and
1 + b + 1 + c = 2 1 + a , \sqrt{1+b}+\sqrt{1+c}=2\sqrt{1+a},
then b + c 2 a b+c\geq 2a .

The statement above is always true or false?

Always True Such an answer can't exist. Always False

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

5 solutions

Tom Engelsman
Aug 23, 2019

If we square both sides of the original radical equation, we obtain:

( 1 + b ) + ( 1 + c ) + 2 ( 1 + b ) ( 1 + c ) = 4 ( 1 + a ) b + c 2 + 2 ( 1 + b ) ( 1 + c ) 2 = 2 a (1+b) + (1+c) + 2\sqrt{(1+b)(1+c)} = 4(1+a) \Rightarrow \frac{b + c - 2 + 2\sqrt{(1+b)(1+c)}}{2} = 2a (i)

Substituting (i) into the RHS of desired inequality above now yields:

b + c b + c 2 + 2 ( 1 + b ) ( 1 + c ) 2 b+c \ge \frac{b + c - 2 + 2\sqrt{(1+b)(1+c)}}{2} ;

or b + c 2 + 1 ( 1 + b ) ( 1 + c ) ; \frac{b+c}{2} + 1 \ge \sqrt{(1+b)(1+c)};

or b + c + 2 2 ( 1 + b ) ( 1 + c ) ; b + c + 2 \ge 2\sqrt{(1+b)(1+c)};

or ( b + c ) 2 + 4 ( b + c ) + 4 4 ( 1 + b ) ( 1 + c ) ; (b+c)^2 + 4(b+c) + 4 \ge 4(1+b)(1+c);

or b 2 + 2 b c + c 2 + 4 b + 4 c + 4 4 + 4 b + 4 c + 4 b c ; b^2 + 2bc + c^2 + 4b + 4c + 4 \ge 4 + 4b + 4c + 4bc;

or b 2 2 b c + c 2 0 ; b^2 - 2bc + c^2 \ge 0;

or ( b c ) 2 0 \boxed{(b-c)^2 \ge 0}

which is TRUE for all choices of b , c R . b,c \in \mathbb{R}.

Brilliant solution! Just develop an equation between b,c and a and then plug in.

S YW - 1 year, 4 months ago

Log in to reply

Thank you!

tom engelsman - 1 year, 3 months ago
Tin Le
Aug 26, 2019

Here is my solution: 1 + b + 1 + c = 2 1 + a \sqrt{1+b}+\sqrt{1+c}=2\sqrt{1+a} ( 1 + b + 1 + c ) 2 = 4 ( 1 + a ) \Rightarrow (\sqrt{1+b}+\sqrt{1+c})^{2} = 4(1+a)

Next, we use the inequality ( a + b ) 2 2 ( a 2 + b 2 ) (a+b)^2 \leq 2(a^2 + b^2) .

( 1 + b + 1 + c ) 2 = 4 ( 1 + a ) 2 ( 2 + c + b ) \Rightarrow (\sqrt{1+b}+\sqrt{1+c})^{2} = 4(1+a) \leq 2(2+c+b) 2 a c + b \Leftrightarrow 2a \leq c+b

David Vreken
Aug 25, 2019

Let x = 1 + a x = \sqrt{1 + a} , y = 1 + b y = \sqrt{1 + b} , and z = 1 + c z = \sqrt{1 + c} . Then a = x 2 1 a = x^2 - 1 , b = y 2 1 b = y^2 - 1 , and c = z 2 1 c = z^2 - 1 .

Substituting these values into the given equation 1 + b + 1 + c = 2 1 + a \sqrt{1 + b} + \sqrt{1 + c} = 2\sqrt{1 + a} gives y + z = 2 x y + z = 2x , so x = y + z 2 x = \frac{y + z}{2} .

Substituting these values into the given inequality b + c 2 a b + c \geq 2a gives ( y 2 1 ) + ( z 2 1 ) 2 ( x 2 1 ) (y^2 - 1) + (z^2 - 1) \geq 2(x^2 - 1) , which simplifies to y 2 + z 2 2 x 2 y^2 + z^2 \geq 2x^2 , and substituting x = y + z 2 x = \frac{y + z}{2} into this gives y 2 + z 2 2 ( y + z 2 ) 2 y^2 + z^2 \geq 2(\frac{y + z}{2})^2 which rearranges to ( y z ) 2 0 (y - z)^2 \geq 0 , which is always true for real numbers y y and z z .

I tought it was false, because when you choose for example -6 for b then it's a root of a negative number.

schittering 06 - 1 year, 8 months ago

Log in to reply

Yes, you have to assume that 1 + a \sqrt{1 + a} , 1 + b \sqrt{1 + b} , and 1 + c \sqrt{1 + c} are real numbers (which probably should have been stated in the problem), otherwise one counterexample is a = 9 4 a = -\frac{9}{4} , b = 6 b = -6 , and c = 1 c = -1 .

David Vreken - 1 year, 8 months ago

Log in to reply

Yes, I didn't assume that, so that was the problem. Thanks for your explanation.

schittering 06 - 1 year, 8 months ago
Richard Desper
Sep 6, 2019

Consider the function f ( x ) = 1 + x f(x) = \sqrt{1 + x} . The statement given is equivalent to

f ( b ) + f ( c ) 2 = f ( a ) \frac{f(b) + f(c)}{2} = f(a) . We are asked whether this implies that b + c 2 a \frac{b + c}{2} \geq a .

Clearly this is true for the trivial case when a = b = c a=b=c . Let us assume b c b \neq c .

Some things to consider about f ( x ) = ( 1 + x ) 1 2 f(x) = (1+x)^{\frac{1}{2}}

  • Its domain is [ 1 , ) [-1,\infty)

  • Its first derivative is f ( x ) = 1 2 ( 1 + x ) 1 2 f'(x) = \frac{1}{2} (1+x)^{\frac{-1}{2}} and f ( x ) > 0 f'(x) > 0 , for all x ( 1 , ) x \in (-1,\infty) . Thus f ( x ) f(x) is an increasing function.

  • Its second derivative is f ( x ) = 1 4 ( 1 + x ) 3 2 f''(x) = \frac{-1}{4} (1+x)^{\frac{-3}{2}} and f ( x ) < 0 f''(x) < 0 , for all x ( 1 , ) x \in (-1,\infty) . Thus f ( x ) f(x) is concave down.

In particular, for b c b \neq c ,

f ( b ) + f ( c ) 2 < f ( b + c 2 ) \frac{f(b) + f(c)}{2} < f(\frac{b+c}{2}) . Thus f ( a ) < f ( b + c 2 ) f(a) < f(\frac{b+c}{2}) .

Since f ( x ) f(x) is an increasing function over its entire domain, the latter fact implies that a < b + c 2 a < \frac{b+c}{2} . QED

Wang Xingyu
Sep 7, 2019

I write a python program to vividly showing the function and the relationship between a,b,c

import numpy as np
import matplotlib.pyplot as plt  
import math 

xLine = np.linspace(-1, 5, num=200)
y = np.array([ math.pow(item+1, 0.5) for item in xLine]) 

plt.plot(xLine,y,label='y = (x+1)^0.5')
plt.plot(xLine,xLine , label='y = x' )
plt.plot([-1, 1], [0, 2**0.5], 'ro', label= 'b,c')
plt.plot([-1/2], [0.5**0.5], 'go', label='a')
plt.legend()
plt.grid()
plt.xlabel('x')
plt.show()

y = (1+x)^0.5 is a Convex function, so the inequality is always true

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...