Very complicated, isn't it?

Algebra Level 5

f ( x ) = a x 5 + b x 4 + c x 3 + d x 2 + e x + f \large f(x) = ax^5 + bx^4 + cx^3 + dx^2 + ex + f

Function f ( x ) f(x) above, where a a , b b , c c , d d , e e and f f are rational numbers, is such that ( x 1 ) 3 f ( x ) + 1 { (x - 1) }^{ 3 } | f(x) + 1 and ( x + 1 ) 3 f ( x ) 1 { (x + 1) }^{ 3 } | f(x) - 1 and a c e = p q ace = \dfrac { p }{ q } , where p p and q q are coprime integers. Find p q \sqrt { pq } .


The answer is 240.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Priyanshu Mishra
Nov 4, 2015

Using calculus , i got f ( x ) = 3 x 5 8 + 5 x 3 4 15 x 8 \large\ f(x) = \frac { -3{ x }^{ 5 } }{ 8 } + \frac { 5{ x }^{ 3 } }{ 4 } - \frac { 15x }{ 8 } ,

forcing

a c e = 3 8 × 5 4 × 15 8 = 225 256 \large\ ace = \frac { -3 }{ 8 } \times \frac { 5 }{ 4 } \times \frac { -15 }{ 8 } =\frac { 225 }{ 256 } .

Thus, p = 225 p = 225 and q = 256 q = 256 .

So, p q = 225 × 256 = 240 \sqrt { pq } = \sqrt { 225\times 256 } = \boxed{240}

You were thinking that how i got f ( x ) f(x) , the proof is here:

f ( x ) + 1 = ( x 1 ) 3 . r ( x ) f(x) + 1 = (x - 1)^{ 3 }.r(x) f ( x ) = ( x 1 ) 2 . r 1 ( x ) ⇒ f'(x) = (x - 1)^{ 2 }.r_{ 1 }(x) . . . ( 1 ) ...(1)

and

f ( x ) 1 = ( x + 1 ) 3 s ( x ) f(x) - 1 = (x + 1)^{ 3 }s(x) f ( x ) = ( x + 1 ) 2 s 1 ( x ) ⇒ f'(x) = (x + 1)^{ 2 }s_{ 1 }(x) . . . ( 2 ) ...(2)

From ( 1 ) (1) and ( 2 ) (2) , f ( x ) f '(x) has double root 1 1 and double root 1 -1

which implies

f ( x ) = k ( x + 1 ) 2 ( x 1 ) 2 = k . ( x 2 1 ) 2 = k . ( x 4 + 1 2 x 2 ) f'(x) = k{ (x + 1) }^{ 2 }{ (x - 1) }^{ 2 } = k.{ ({ x }^{ 2 } - 1) }^{ 2 }=k.({ x }^{ 4 } + 1 - 2{ x }^{ 2 }) , k R k \in R

Then

f ( x ) = ( k . f ( x ) ) d x = k . ( x 4 + 1 2 x 2 ) d x = k . x 5 5 2 x 3 3 + x + C \large\ f(x) = \int { (k.f'(x))dx } = k.\int { ({ x }^{ 4 } + 1 - 2{ x }^{ 2 })dx } = k.\frac { { x }^{ 5 } }{ 5 } - \frac { 2{ x }^{ 3 } }{ 3 } + x + C .

Now, as

f ( x ) + 1 = ( x 1 ) 3 r ( x ) f ( 1 ) + 1 = 0 k . ( 8 15 + C ) + 1 = 0 \large\ f(x) + 1 = (x - 1)^{ 3 }r(x) ⇒ f(1) + 1 = 0 ⇒ k.\left( \frac { 8 }{ 15 } + C \right) + 1 = 0 . . . ( 3 ) ...(3)

and

f ( x ) 1 = ( x + 1 ) 3 r ( x ) f ( 1 ) 1 = 0 k . ( 8 15 + C ) 1 = 0 \large\ f(x) - 1 = (x + 1)^{ 3 }r(x) ⇒ f(-1) - 1 = 0 ⇒ k.\left( -\frac { 8 }{ 15 } + C \right) - 1 = 0 . . . ( 4 ) ...(4)

we have from ( 3 ) (3) and ( 4 ) (4)

C = 0 ⇒ C = 0 , k = ( 15 8 ) \large\ k = \left( -\frac { 15 }{ 8 } \right) .

Then we have the answer

f ( x ) = ( 15 8 ) . ( x 5 5 2 x 3 3 + x ) \large\ f(x) = \left( -\frac { 15 }{ 8 } \right) .\left( \frac { { x }^{ 5 } }{ 5 } - \frac { 2{ x }^{ 3 } }{ 3 } + x \right)

or

f ( x ) = 3 x 5 8 + 5 x 3 4 15 x 8 \large\ f(x) = \frac { -3{ x }^{ 5 } }{ 8 } + \frac { 5{ x }^{ 3 } }{ 4 } - \frac { 15x }{ 8 } as desired.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...