Very easy???

Algebra Level 3

Let a , b , c 0 a, b, c \geq 0 such that a + b + c = 3 a+b+c = 3 . Find the minimum of a 3 b + 2 + b 3 c + 2 + c 3 a + 2 a 2 b 2 c 2 \frac{a^3}{b+2} + \frac{b^3}{c+2} + \frac{c^3}{a+2} - a^2 - b^2 - c^2


The answer is -2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Shobhit Singh
Nov 22, 2014

Really VERY EASY!!!!!! just 1 min ques..

min. value will be when a=b=c=1. put a=b=c=1 in expression and you will get -2.
1 b'coz a,b,c is positive.

...Well I guess thats how 75% Of the people got it.....

T sidharth - 4 years, 9 months ago
Rudresh Tomar
Nov 13, 2014

hy guys, my solution. if any flaws do tell me please:

F o r a 3 ( c + 2 ) ( a + 2 ) + b 3 ( a + 2 ) ( b + 2 ) + c 3 ( b + 2 ) ( c + 2 ) ( a 2 + b 2 + c 2 ) ( a + 2 ) ( b + 2 ) ( c + 2 ) ( a + 2 ) ( b + 2 ) ( c + 2 ) t o b e m i n i m u m ( a + 2 ) ( b + 2 ) ( c + 2 ) h a s t o b e m a x i m u m n o w , ( a + 2 ) + ( b + 2 ) + ( c + 2 ) 3 ( a + 2 ) ( b + 2 ) ( c + 2 ) 3 [ b y A M G M ] 3 ( a + 2 ) ( b + 2 ) ( c + 2 ) 3 27 ( a + 2 ) ( b + 2 ) ( c + 2 ) t h e m a x v a l u e o f ( a + 2 ) ( b + 2 ) ( c + 2 ) c o m e s 27 w h i c h i s p o s s i b l e o n l y w h e n a = b = c = 1 a f t e r p u t t i n g a = b = c = 1 i n t h e o r i g i n a l e q . t h e m i n i m u m v a l u e c o m e s 2. For\\ \Longrightarrow \frac { { a }^{ 3 }(c+2)(a+2)+b^{ 3 }(a+2)(b+2)+c^{ 3 }(b+2)(c+2)-({ a }^{ 2 }+b^{ 2 }+c^{ 2 })(a+2)(b+2)(c+2) }{ (a+2)(b+2)(c+2) } \\ to\quad be\quad minimum\\ \Longrightarrow \quad (a+2)(b+2)(c+2)\quad has\quad to\quad be\quad maximum\\ now,\\ \frac { (a+2)+(b+2)+(c+2) }{ 3 } \ge \sqrt [ 3 ]{ (a+2)(b+2)(c+2) } \quad \quad \quad \longrightarrow [by\quad AM\ge GM]\\ \Longrightarrow \quad 3\quad \ge \sqrt [ 3 ]{ (a+2)(b+2)(c+2) } \\ \Longrightarrow \quad 27\quad \ge \quad (a+2)(b+2)(c+2)\\ \therefore \quad the\quad max\quad value\quad of\quad (a+2)(b+2)(c+2)\quad comes\quad 27\quad which\\ \quad \quad \quad is\quad possible\quad only\quad when\quad a=b=c=1\\ after\quad putting\quad a=b=c=1\quad in\quad the\quad original\quad eq.\quad \\ the\quad minimum\quad value\quad comes\quad -2.\quad

Aditya Tiwari
Nov 13, 2014

Thats it!!!! Did it the same way. Nice solution:)

Bảo Châu
Aug 21, 2014

Who can write a full solution for this problem?

Try to use AM-GM and CS repeatedly :)

Krishna Ar - 6 years, 9 months ago

I used the equality case of AM-GM that is I assumed a=b=c=1 can any expert tell me more about this solution

ashutosh mahapatra - 6 years, 8 months ago

I think we can't solve this problem by using AM-GM!!!

Bảo Châu - 6 years, 8 months ago

i also used am gm equality that a=b=c=1 how to solve by method

nikhil jaiswal - 6 years, 8 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...